
Copyright © 2017 John L. Gustafson

Permission  is  hereby  granted,  free  of  charge,  to  any  person  obtaining  a  copy  of  this  software  and  associated  documentation  files  (the
"Software"),  to  deal  in  the  Software  without  restriction,  including  without  limitation  the  rights  to  use,  copy,  modify,  merge,  publish,
distribute, sub-license, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

This copyright  and permission notice shall be included in all copies or substantial portions of the software.

THE  SOFTWARE  IS  PROVIDED  "AS  IS"  WITHOUT  WARRANTY  OF  ANY  KIND,  EXPRESS  OR  IMPLIED,  INCLUDING  BUT  NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
NO  EVENT  SHALL  THE  AUTHORS  OR  COPYRIGHT  HOLDERS  BE  LIABLE  FOR  ANY  CLAIM,  DAMAGES,  OR  OTHER  LIABILITY,
WHETHER  IN  AN  ACTION  OR  CONTRACT,  TORT  OR  OTHERWISE,  ARISING  FROM,  OUT  OF  OR  IN  CONNECTION  WITH  THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Posit Arithmetic
John L. Gustafson
10 October 2017

1 Overview
Unums  are  for  expressing  real  numbers  and  ranges  of  real  numbers.  There  are  two  modes  of
operation, selectable by the user: posit mode and valid mode.

In  posit  mode,  a  unum behaves  much  like  a  floating-point  number  of  fixed  size,  rounding  to  the
nearest expressible value if the result of a calculation is not expressible exactly; however, the posit
representation offers more accuracy and a larger dynamic range than floats with the same number
of bits, as well as many other advantages. We can refer to these simply as posits for short, just as
we  refer to IEEE 754 Standard floating-point numbers as floats.

In valid mode,  a unum represents a range  of real numbers and can be used to rigorously bound
answers  much  like  interval  arithmetic  does,  but  with  a  number  of  improvements  over  traditional
interval  arithmetic.  Valids  will  only  be  mentioned  in  passing  here,  and  described  in  detail  in  a
separate document.

This document focuses on the details of posit mode, which can be thought of as “beating floats at
their own game.” It introduces a type of unum, Type III, that combines many of the advantages of
Type I  and  Type II  unums,  but  is  less  radical  and  is  designed as  a  “drop-in”  replacement  for  an
IEEE  754  Standard  float  with  no  changes  needed  to  source  code  at  the  application  level.  The
following table may help clarify the terminology.



Unum
Date

Intro-
duced

IEEE 754
Compati-

bility
Advantages Disadvantages

Type I March
2015

Yes;
perfect

superset

Most bit-efficient
rigorous-bound
representation

Variable width
management needed;

inherits IEEE 754 dis-
advantages, such as

redundant representations

Type II January
2016

No;
complete
redesign

Maximum infor-
mation per bit

(can customize to a
particular workload);

perfect reciprocals
(+ – × ÷ equally easy);

extremely fast via
ROM table lookup;

allows decimal
representations

Table look-up
limits precision to
~20 bits or less;

exact dot product
is usually expensive

and impractical

Type III February
2017

Similar;
conversion

possible

Hardware-friendly;

posit form is a drop-
in replacement

for IEEE floats (less
radical change);

Faster, more accurate,
lower cost than float

Too new to have
vendor support

from vendors yet;

perfect reciprocals
only for 2n, 0, and ±∞

Type III posits use a fixed number of bits, though that number is very flexible, from as few as two
bits up to many thousands. They are designed for simple hardware and software implementation.
They make use of  the same type of  low-level  circuit  constructs that  IEEE 754 floats use (integer
adds,  integer  multiplies,  shifts,  etc.),  and  take  less  chip  area  since  they  are  simpler  than  IEEE
floats  in  many  ways.  Early  FPGA  experiments  show  markedly  reduced  latency  for  posits,  com-
pared to floats of the same precision.

As  with  all  unum  types,  there  is  an  h-layer  of  human-readable  values,  a  u-layer  that  represents
values with unums, and a g-layer that performs mathematical operations exactly and temporarily,
for return to the u-layer. Here, the h-layer looks very much like standard decimal input and output,
though  we  are  more  careful  about  communicating  the  difference  between  exact  and  rounded
values.  The  u-layer  is  posit-format  numbers,  which  look  very  much  like  floats  to  a  programmer.
The  g-layer  represents  temporary  (scratch)  values  in  a  quire,  which  does  exact  operations  that
obey the distributive and associative laws of algebra and allow posits to achieve astonishingly high
accuracy with fewer bits than floats. It's a lot to explain at once, but let's start with the u-layer since
it is the closest cousin to floating-point arithmetic.
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1.1 Brief description of the format for posit mode, Type III unums

A posit for Type III unums is designed to be hardware-friendly, and looks like the following:

s

sign
bit

regime
bits

r r r r ⋯ r

exponent
bits, if any

e1 e2 e3 ⋯ ees

fraction
bits, if any

f1 f2 f3 f4 f5 f6 ⋯

nbits

The boundary between regions is only shown after the sign bit, because the other boundaries vary
with   the  size  of  the  regime.  The  regime  is  the  sequence  of  identical  bits  r,  terminated  by  the
opposite bit r  or by the end of the posit. This way of representing integers is sometimes referred to
as “unary  arithmetic”  but  it  is  actually  a  bit  more sophisticated.  The most  primitive way to  record
integers  is  with  marks,  where  the  number  of  marks  is  the  number  represented.  Think  of  Roman
numerals,

1 = I, 2 =II, 3 =III, but then it breaks down and uses a different system for  4 = IV.
Or in Chinese and Japanese,

1 = , 2 = , 3 =㆔, but then the system breaks down and uses a different system for 4 =㆕.
The situation we see this system going beyond 3 is tally marks, the way countless cartoons depict
prisoners  tracking  how  many  days  they’ve  been  in  prison.  But  how  can  tally  marks  record  both
positive, zero, and negative integers? We can imagine early attempts to notate the concept:
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But we have the ability to use two kinds of "tick mark": zero and one. This means we can express
both positive and negative  integers by repeating the mark. Like, negative integers by repeating 0
bits and zero or positive integers by repeating 1 bits.

The number  of  exponent  bits  is  es,  but  the number  of  those bits  can be less than es  if  they are
crowded off the end of the unum by the regime bits. For people used to IEEE floats, this is usually
the part  where confusion sets  in.  “Wait,  exactly  where  are the exponent  bits,  and how many  are
there?” They do not work the same way as the exponent field of a float. They move around, and
they can be clipped off. For now, think of the regime bits and exponent bits as together serving to
represent an integer k, and the scaling of the number is 2k.

The fraction bits  are  whatever  bit  locations are  not  used by  the sign,  regime,  and exponent  bits.
They  work  exactly  like  the  fraction  bits  for  normalized  floats.  That's  the  main  thing  that  makes
Type III  posits  hardware-friendly.  Just  as  with  normalized (binary)  floats,  the  representation  boils
down to

(-1)sign×2some integer power×(1 plus a binary fraction)

Hardware designers will be happy to hear that there are no “subnormal” posits like there are with
floats, that there is only one rounding mode, and there are only two exception values (0 and ±∞)
that do not work like the above formula.

The reason for introducing regime bits is that they automatically and economically create tapered
accuracy,  where  values  with  small  exponents  have  more  accuracy  and  very  large  or  very  small
numbers have less accuracy.  (IEEE floats have a crude form of  tapered accuracy called gradual
underflow  for  small-magnitude  numbers,  but  they  have  no  equivalent  for  large-magnitude  num-
bers.) The idea of tapered accuracy was first proposed by Morris in 1971 and a full implementation
was created in  1989,  but  it  used a  separate  field  to  indicate  the  number  of  bits  in  the  exponent.
Not  only  was  that  scheme  wasteful  of  bits,  it  led  to  a  plethora  of  bit  patterns  that  all  meant  the
same number and a hopelessly complicated mess when comparing x < y  and x = y. This does not
happen with Type III posits: every bit string has a unique meaning, and comparisons are the same
as comparing signed integers.

The posit environment is set by specifying two numbers: nbits, the total number of bits in the posit,
and  es,  the  maximum  size  of  the  exponent  bit  field.  Again,  the  bit  fields  represent  a  numerical
value similarly to how the bit fields in floats work, except:
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and  es,  the  maximum  size  of  the  exponent  bit  field.  Again,  the  bit  fields  represent  a  numerical
value similarly to how the bit fields in floats work, except:

◼ If  the  sign  bit  is  1,  the  unum  bit  string  is  negated  (treating  it  as  a  standard  2’s  complement
integer) before decoding the remaining fields. This eliminates the need for “negative zero” and
all  the  complications  of  having  two  distinct  bit  patterns  represent  the  same  real  value.  (It  is
possible for hardware to decode the meaning of a posit bit string directly without first taking the
absolute  value,  which  makes  the  circuits  faster  and  simpler.  However,  that  makes  the
explanation  more  complicated,  so  here  we  will  assume  the  2’s  complement  is  used  when
working with a negative posit value.)

◼ A machine instruction that tests if two integers are equal will also serve to compare two posits,
whereas  float  instructions  need  a  additional  exception  tests  for  negative  zero  (equal  even
though  bit  patterns  are  different)  and  also  a  check  for  NaN  values  (not  equal,  even  when  bit
patterns are identical).

◼ The number of identical regime bits r determines a positive or negative power of 22es
 that scales

the value, and the exponent bits scale the value by a power of 2 ranging from 20 to 22es-1. Like,
with  es = 3,  the  three  exponent  bits  can  represent  binary  integers  from  000 = 0  to
111 = 223-1 = 7.  The  regime  bits  determine  the  positive  or  negative  power  of  23 = 8,  so  the
regime  and  exponent  together  can  express  a  signed  integer  k  that  works  like  the  integer
expressed by the exponent bits in a float.

◼ There  are  no  subnormal  (denormalized)  numbers.  The  implied  "hidden  bit"  before  the  fraction
bits is always 1.

◼ Posits do not underflow to zero or overflow to infinity like floats do. Rounding is to the nearest
number,  where  “nearest”  is  the  smallest  difference  when  rounding  fraction  bits,  and  smallest
ratio  when  rounding  exponent  bits.  There  are  no  flags  hidden  in  the  state  of  the  processor  to
indicate  that  something  happened  during  the  calculation;  what  you  see  is  what  you  get.
Debugging  tools  can  provide  a  rich  source  of  information  regarding  underflow,  overflow,  and
other exceptions when a code is being developed, but they do not burden the processor during
normal operation.

The  other  major  component  of  the  definition  of  posit  arithmetic  is  the  quire,  the  fixed-size  set  of
bits  used  for  scratch  operations  that  are  mathematically  exact  in  the  g-layer.  A  quire  can  be
thought  of  as  a  dedicated  register  that  permits  dot  products,  sums,  and  other  operations  to  be
performed  with  rounding  error  deferred  to  the  very  end  of  the  calculation.  All  computers  use  a
hidden scratch area for temporary calculations. In posit arithmetic, the quire data type is accessi-
ble to the programmer, which is what makes possible for posits to follow the rules of algebra much
more  closely  than  floats  do.  The  quire  concept  is  incredibly  powerful.  It  allows  posits  to  “punch
above their  weight class.”  We will  later show some examples where 16-bit  posits can outperform
64-bit floats at both speed and accuracy!
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1.2 A 16-Bit Example

People  always  ask  to  see  an  example  right  away  instead  of  wading  through  a  litany  of  careful
definitions. So here is an example of how the bit fields work for a 16-bit posit. Pick es = 3, so the
regime bits scale by negative and positive powers of 223

= 256. Note: A “standard” 16-bit posit has
an es size of 1, not 3, but 3 works better here for purposes of illustration.

× × (1 + )

0

sign

+

regime

0 0 0

256-3

1

exponent

1 0 1

25

fraction

1 1 0 1 1 1 0 1

221 /256

The sign bit of 0 means the value is positive. The regime bits have a run of three 0s terminated by
the  opposite  bit  1,  which  means  the  power  of  useed  is  -3.  The  scale  factor  from  the  regime  is
256-3. The exponent bits, 101, represent 5 as an unsigned binary integer, and contribute another
scale factor of 25. Lastly, the fraction bits 11011101 represent 221 as an unsigned binary integer,
so  the  fraction  is  1 + 221 /256.  The  expression  written  underneath  the  bits  works  out  to
477 × 2-27 ≈ 3.55393 × 10-6.

The  regime  bits  may  seem  like  a  weird  and  artificial  construct,  but  they  actually  arise  from  a
natural  and  elegant  geometric  mapping  of  binary  integers  to  the  projective  real  numbers  on  a
circle. The extraction of bit fields and their meaning will be discussed in more detail later.

Notice that the largest shift expressible by the exponent here is 111 = 7 bits, or 27. That means the
exponent can scale the fraction by a factor of 1, 2, 4, 8, …, or 128. If you need to scale by a factor
of 256, that’s where the regime bits come in, because they express powers of 256.

1.3 The two exception values for posits

The above description of bit fields and their meanings has exceptions for just two posit bit strings:
◼ If all bits are 0, the number represented is zero.
◼ If  only  the  first  bit  is  1  and  the  rest  are  0,  the  value  represented  is  ±∞,  sometimes  called

“projective infinity” or “complex infinity” or “the point at infinity.” If you do not have a way to type
“±∞”, inf can be used to mean the same thing. The values ±∞ and zero are reciprocals of each
other, and the division of any nonzero number by zero does not trigger an error condition; it  is
simply ±∞. The diagrams in Section 2 will make this more clear.

There is only one rounding mode: round to nearest, tie to nearest even, the same as the default
rounding mode for IEEE 754 floats. If  a programmer or user feels the need for the other three
modes that floats support (round down, round up, round toward zero), that means the applica-
tion calls for valids, not posits, or perhaps just a decent debugging tool.

What  “nearest”  means  in  rounding  is  a  bit  more  complicated  than  with  floats,  because  the  bits
clipped  off  on  the  right  are  not  necessarily  fraction  bits;  part  or  all  of  the  exponent  field  can  be
clipped  off,  too.  When  an  exponent  bit  is  clipped  off  and  must  be  rounded,  "nearest"  means
"nearest  exponent,"  and the  tie  point  is  the  geometric  mean  between the  two choices  instead of
the arithmetic  mean.  If  that  worries  you,  consider  that  it  happens very  rarely,  and only  when the
calculation is about to hit the limits of the dynamic range so it’s probably already off the rails and
the algorithm needs to be debugged.

If  a  calculation  exceeds  the  largest  representable  posit  by  some  amount,  should  it  overflow  to
infinity? Certainly not! That would turn some finite amount of error into an infinitely wrong answer.
Which is what floats do. Similarly, we never allow underflow to zero since doing so means throw-
ing away all information about an answer… even the sign. As with nonstandard rounding modes, a
need to distinguish underflow,  overflow,  and NaN is  generally  an indication that  an application is
still in development and not yet ready for production use. To quote Donald Knuth: “It has unfortu-
nately  become  customary  in  many  instances  to  ignore  exponent  underflow  and  simply  to  set
underflows  to  zero  with  no  indication  of  error.  This  causes  a  serious  loss  of  accuracy  in  most
cases  (indeed,  it  is  the  loss  of  all  the  significant  digits),  and  the  assumptions  underlying  floating
point  arithmetic  have  broken  down,  so  the  programmer  really  must  bet  old  when  underflow  has
occurred. Setting the result to zero is appropriate only in certain cases when the result is later to
be added to a significantly larger quantity.

To  see  why  this  is,  imagine  there  is  some  chance  that  an  application  produces  an  out-of-range
number that  is  too large or too small.  Posit  arithmetic returns a number of  magnitude maxpos  or
minpos, and it is up to the programmer what to do about that. Which means the handling of such
situations is visible in the source code, like
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if (x = minpos || x = -minpos, 0, x);

In  other  words,  if  a  programmer  prefers  that  a  calculation  underflow,  then  explicitly  replace  the
small result with zero. It is rare for a programmer to want this. It is even more rare for a program-
mer to want a computer to underflow with the only indicator being a flag hidden in the processor
that  can  only  be  made  visible  using  assembly  language!  For  over  thirty  years,  the  IEEE  754
Standard  has  forced  hardware  engineers  to  put  flags  into  processor  registers  in  the  hope  that
popular computer languages would make them visible somehow. It hasn’t happened.

Exception values in any data type add to hardware complexity, and also increase energy consump-
tion. The posit  format has far fewer exceptions than floats. In a 64-bit  representation, floats have
quadrillions  of  bit  patterns  that  represent  "Not  a  Number"  (NaN),  whereas  posits  use  those  bit
patterns to represent numerical values. If the user asks for the square root of a negative number,
zero divided by zero, etc. with posits, the computer language should catch it and report it if that is
in  the  rules  for  the  language.  If  something  makes  it  through  the  protections  of  the  language  to
actually  attempting something like 0 ÷  0,  the default  behavior  is  to  produce the posit  for  ±∞  and
continue computing, what float arithmetic calls "Quiet NaN." This avoids the logical contradiction of
declaring a result to be unrepresentable as a number, and then…  representing it  as a number.  It
also avoids any need for the hardware to test for a NaN when beginning an arithmetic operation,
since NaN is not possible as an input. There is no bit string that represents it. The ±∞ value  fulfills
the  role  of  a  “quiet  NaN.”  While  a  computer  language should  protect  against  the  following  situa-
tions,

±∞ + ±∞

±∞ – ±∞
0×∞
∞×0
0 ÷ 0
±∞ ÷ ±∞,

if it does not, we let ±∞ serve as the quiet NaN indicator. It is the dumping ground for all that goes
wrong  and  we  can  consider  it  to  be  “rounding  to  infinity.”  Remember,  even  very  large  numbers
never round to infinity with posits, so getting ±∞ means you did one of the things your math teach-
ers  told  you never  to  do,  liked dividing by zero.  This  policy  is  useful  in  situations,  say,  where an
array of numbers needs to be processed to completion and the cases that throw an exception can
be discarded. Sometimes, input data fails to come in so an value is completely unknown, but we
don’t want to halt computation because there was an occasional dropout. That’s when you need a
quiet NaN.

Some may object,  "But the exception for  the square root of  a negative number is different,  and I
need a different  behavior  for  that!"  Think about  what this means. A program occasionally  tries to
compute the a real number as the square root of a negative value. Is this something the hardware
should  try  to  handle  gracefully?  Of  course  not.  It's  a  bug.  The  programmer  needs  to  stop  that
situation from happening in the first place. The offending line of the code 
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array of numbers needs to be processed to completion and the cases that throw an exception can
be discarded. Sometimes, input data fails to come in so an value is completely unknown, but we
don’t want to halt computation because there was an occasional dropout. That’s when you need a
quiet NaN.

Some may object,  "But the exception for  the square root of  a negative number is different,  and I
need a different  behavior  for  that!"  Think about  what this means. A program occasionally  tries to
compute the a real number as the square root of a negative value. Is this something the hardware
should  try  to  handle  gracefully?  Of  course  not.  It's  a  bug.  The  programmer  needs  to  stop  that
situation from happening in the first place. The offending line of the code 

y = sqrt (x)

needs to be replaced with something like

y = if (x ≥ 0, (*then*)sqrt (x), (*else*) reportsquarerooterror (x))

or it may be that the definition of the sqrt(x) function is to produce an error message and halt, in
a  particular  language  and  computing  environment.  If  the  handling  of  errors  is  entrusted  to  an
interrupt that invokes the operating system, that means there will be different behavior on different
systems.  The next  objection is  usually  “But  conditional  statements will  slow down my code!”  The
answer  to  this  is  similarly  to  ask  if  hardware  is  supposed  to  handle  programming  bugs  at  full
speed,  or  if  the  programmer  should  figure  out  the  places  where  exceptions  can  happen,  and
protect  just  those  places  with  explicit  instructions  about  what  to  do.  Obviously,  the  latter.  Asking
hardware to always be on the lookout for errors and to produce detailed info about what happened
is like turning on debug mode when compiling a program, and then demanding that debug mode
runs  at  full  speed  so  that  production  codes  can  always  be  in  debug  mode  with  no  performance
penalty. Experienced programmers will recognize the foolishness of such a demand.

Valid  mode  has  far  more  informative  ways  of  representing  the  results  of  operations  as  sets
(including  the  empty  set),  and  can  continue  computing  even  when  mathematicians  would  pro-
nounce a result indeterminate.  Posits are designed for speed, simplicity, and economy, which for
many computer  users  (such as those who play video games,  or  who use numerical  methods for
which  floats  appear  to  be  good  enough  in  practice),  for  whom  speed  is  paramount.  For  those
concerned with rigorous computing that puts bounds on results and tracks any loss of accuracy, or
those still working out the numerical behavior of an algorithm to make sure it behaves, valid mode
is the answer.
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(including  the  empty  set),  and  can  continue  computing  even  when  mathematicians  would  pro-
nounce a result indeterminate.  Posits are designed for speed, simplicity, and economy, which for
many computer  users  (such as those who play video games,  or  who use numerical  methods for
which  floats  appear  to  be  good  enough  in  practice),  for  whom  speed  is  paramount.  For  those
concerned with rigorous computing that puts bounds on results and tracks any loss of accuracy, or
those still working out the numerical behavior of an algorithm to make sure it behaves, valid mode
is the answer.

The  current  IEEE  754  definition  attempts  a  mixture  of  the  two  esthetics,  speed  and  validity,
which means it achieves neither. “Almost true” is mathematically the same as “false.”

For example, the variety of rounding modes is touted as a technique for checking the sensitivity of
an  algorithm  to  rounding  error,  but  that  technique  still  provides  no  guarantees  of  validity  and  it
adds  complexity  to  the  circuitry.  Similarly,  "negative  zero"  is  sometimes  treated  as  some kind  of
indicator of a negative infinitesimal, and at other times it is simply zero, creating more complexity
and gate delays for hardware designers, but infinitesimally little value to their customers.

2 Specifics: Converting a posit bit string to a value

2.1 Setting the posit environment

We  defined  the  computing  environment  with  esizesize  and  fsizesize  in  Type  I  unums.  Instead,
here, we define nbits and es as the global integer values we need for establishing the meaning of
a  posit.  The  value  nbits  is  the  total  number  of  bits  in  the  number  and  can  be  any  integer  2  or
greater; es, the number of exponent bits, can be any integer 0 or greater. The nbits and es values
can  be  chosen  independent  of  each  other;  it  may  seem strange,  but  you  can  have,  say,  a  4-bit
posit with a maximum of 5 exponent bits. It does not break the math.

Similarly  to  Type  I  unums,  the  setpositenv  routine  uses  nbits  and  es  to  compute  values  that
characterize the posit environment. The number of possible bit  patterns, npat,  is 2nbits.  The value
22es

 is called useed because it arises so often. Besides computing npat and useed, setpositenv
finds the minimum and maximum positive numbers, minpos and maxpos. Those values determine
the  dynamic  range,  consistent  with  IEEE  floats.  The  extremes  are  always  exact  reciprocals  for
posits; 1

minpos
= maxpos; the dynamic range is perfectly balanced about 1.0, and every power of 2

has an exact reciprocal. (These properties do not hold for IEEE floats.)

It is also necessary to set the size of the quire register, qsize, and the number of extra bits it has
for  worst-case  summations  that  produce  carry  bits,  qextra.  The  quire  register  will  be  explained
later in a section on Fused Operations.

setpositenv[{n_Integer /; n ≥ 2, e_Integer /; e ≥ 0}] :=
{nbits, es} = {n, e};
npat = 2nbits;
useed = 22es;
{minpos, maxpos} = useed-nbits+2, useednbits-2;
qsize = 2Log2,(nbits-2) 2es+2+5;
qextra = qsize - (nbits - 2) 2es+2;

For example, a 6-bit posit environment with a single exponent bit is established this way:
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For example, a 6-bit posit environment with a single exponent bit is established this way:

setpositenv[{6, 1}]

That command assigned these global variables:

{nbits, es, npat, useed, minpos, maxpos, qsize, qextra}

6, 1, 64, 4,
1

256
, 256, 64, 32

Most computer architectures have a strong preference for powers of two as the bit sizes for vari-
ables, or at least multiples of 8-bit bytes. If it  is not a performance burden for a computer to use,
say,  56-bit  posits  instead  of  64-bit  floats,  then  the  56-bit  posits  can  often  provide  more  accurate
answers than 64-bit floats. The savings in memory and bandwidth needed for the smaller numbers
may save time (and energy and power) on bandwidth-limited computers, depending on how much
they  require  alignment  of  fetches  and  stores  on  larger  power-of-two  boundaries.  Users  may
discover  that  64-bit  floats  are  overkill  for  their  application,  but  that  they  need  more  accuracy  or
dynamic range than a 32-bit float provides; in some of those cases, a 32-bit posit may suffice and
produce a clear  performance and storage advantage over  64-bit  standard floats.  Similarly,  16-bit
posits  can  sometimes  replace  32-bit  floats,  and  we know of  at  least  one  application  (neural  net-
work training) where 8-bit posits can replace 16-bit floats. The use of the quire register is a power-
ful way to create long sequences of arithmetic operations with only one rounding error at the end,
and can even allow 16-bit posits to replace 64-bit floats in some situations.

Notice that the ratio of maxpos to minpos is useed2 nbits-4, which determines the dynamic range of
the posits. Recall that useed is 22es

. The posit format uses regime bits to raise useed to the power
of any integer from -nbits + 1 to nbits - 1, so the dynamic range is an exponential of an exponen-
tial  of an exponential.  Hence, posits can create a larger dynamic range from fewer exponent bits
than the system used for IEEE floats, leaving more fraction bits available to improve the accuracy
of  results.  In other  words,  the es  setting is  powerful,  so be careful  with that  thing.  A value larger
than  5  might  tax  your  computer’s  memory;  simply  printing  the  exact  value  of  minpos  with  es = 5
requires several gigabytes.

2.2 Extracting the sign bit

A posit  bit  string, if  interpreted as a 2’s complement integer,  would range from -npat  to npat - 1.
Mathematica  does  not  handle  2’s  complement  integers  as  a  native  type,  so  this  explanation  will
have  to  make  do  with  integers  between  0  and  npat - 1.  The  unsigned  integer  for  npat /2  is  the
posit bit string that represents ±∞. If you have signed integers the posit bit string for ±∞ looks like
-npat /2.

The positQ test returns True if an input integer (considered as a bit string) is a viable posit, and
False otherwise.
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positQ[p_Integer] := 0 ≤ p < npat

The following function will help deal with the lack of 2’s complement integers in Mathematica.

twoscomp[sign_, p_] := Mod[If[sign > 0, p, npat - p], npat]

Extracting the sign bit  of  a posit  is  easy,  It’s  the most  significant  bit,  0  for  positive numbers (and
zero) or 1 for negative numbers (and ±∞). The color-coding of bits, similar to that used for all types
of unums, makes long binary strings easier to read. The sign bit is color-coded red (RGB compo-
nents 1, 0.125, 0):

signbit[p_ /; positQ[p]] := IntegerDigits[p, 2, nbits]〚1〛

Test it at the extreme points of possible posit values, including an illegal one for the {6, 1} environ-
ment we just set:

signbit[1]
signbit[npat - 1]
signbit[npat]

0

1

signbit[64]

Notice  that  the  positQ  function  protects  us  from  evaluating  the  signbit  of  the  out-of-range
integer npat,  since the posit  bit  strings range from 0 to npat - 1 (when viewed as unsigned inte-
gers).  In  a  C  environment,  the  test  that  an  input  p  is  a  signed  integer  representing  a  valid  posit
would be to require -32 ≤ p < 32, not 0 ≤ p < 64. (When Mathematica is asked to perform an out-of-
domain  operation,  it  simply  echoes  the  expression  back  to  the  user,  like  when  it  returns
“signbit[64]” above.)

2.3 Extracting the regime bits

The regime bits are dictated by the length of the run of identical bits, either all 0s or all 1s. Identical
regime bits  are color-coded amber (RGB 0.8,  0.6,  0.2).  A simple way to decode it  is,  if  the posit
has a sign bit  of  1,  negate the bit  string for  the posit  as a 2's  complement  signed integer  (which
means flip all the bits and add 1). In assembly language, many of the complicated-looking expres-
sions in this function are single opcodes that execute in one clock cycle on most processors, like
“Find First  One”  or  “Count  Leading Zeros.”  In  the regimebits  function we take the binary  digits
apart as a string, but real hardware (or a routine in a low-level language) could perform bit extrac-
tion much more quickly and simply.

The run of bits terminates when we reach the end of the string, or when the opposite bit happens.
The opposite bit that terminates a regime is color-coded brown (RGB 0.6, 0.4, 0.2).
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The regime bits are dictated by the length of the run of identical bits, either all 0s or all 1s. Identical
regime bits  are color-coded amber (RGB 0.8,  0.6,  0.2).  A simple way to decode it  is,  if  the posit
has a sign bit  of  1,  negate the bit  string for  the posit  as a 2's  complement  signed integer  (which
means flip all the bits and add 1). In assembly language, many of the complicated-looking expres-
sions in this function are single opcodes that execute in one clock cycle on most processors, like
“Find First  One”  or  “Count  Leading Zeros.”  In  the regimebits  function we take the binary  digits
apart as a string, but real hardware (or a routine in a low-level language) could perform bit extrac-
tion much more quickly and simply.

The run of bits terminates when we reach the end of the string, or when the opposite bit happens.
The opposite bit that terminates a regime is color-coded brown (RGB 0.6, 0.4, 0.2).

regimebits[p_ /; positQ[p]] :=
Module[{q = twoscomp[1 - signbit[p], p], bits, bit2, npower, tempbits},
bits = IntegerDigits[q, 2, nbits];
bit2 = bits〚2〛; (* Look for the run length after the sign bit. *)

tempbits = Join[Drop[bits, 1], {1 - bit2}]; (* Drop the sign bit,
but append a complement bit as a sure-fire way to end the run. *)

npower = (Position[tempbits, 1 - bit2, 1, 1])〚1〛 - 1;
(* Find first opposite bit. *)

Take[bits, {2, Min[npower + 1, nbits]}]]

The interpretation of the regime bits is a lot like clothing sizes; L is Large, XL is Extra Large, XXL
is  Extra  Extra  Large,  and  so  on.  Count  the  number  of  X  characters.  The  function  regimevalue
uses  a  similar  principle,  and  it’s  a  one-liner  function.  It  could  have  been  the  direct  output  of
regimebits, but for clarity, we calculate the integer represented by the regime bits in two stages.

regimevalue[bits_] := If[bits〚1〛 ⩵ 1, Length[bits] - 1, -Length[bits]]

Here are two examples. Notice that for positive exponents, the regime value is one less than
the number of bits in the run, since we need to be able to represent a value of zero. Again,
hardware would have no trouble doing this kind of thing very quickly; it looks a lot like 2’s comple-
ment logic.

First, a small positive number (remember, we are still in a 6-bit posit environment):

regimebits[2^^000011]
regimevalue[%]

{0, 0, 0}

-3

Next,  try  a  negative  number,  so  that  it  gets  negated  2’s  complement  style,  and  the  run  of  0  bits
turns into a run of 1 bits. Note: the 2’s complement of 100001 is 011110 + 1 = 011111; that is, flip
all the bits and add 1.

regimebits[2^^100001]
regimevalue[%]

{1, 1, 1, 1, 1}

4

2.4 Extracting the exponent bits

The next field is the exponent bits. Even if  es  is greater than zero, there might not be  any expo-
nent bits, because the regime bits can crowd some or all of them off the right end of the number!
For  example,  011111  has  no  exponent  bits,  and  neither  does  011110.  Exponent  bits  start  to
appear for shorter runs of regime bits, like 011100 and 011101.

In the following code, the run of regime bits is terminated by the opposite bit, so we skip over that
termination  bit  and  look  at  the  next  es  bits  or  however  many  are  left,  whichever  is  smaller.  The
result can be anything from the empty set, { }, to a sequence of bits of length es.
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The next field is the exponent bits.  Even if  es  is  greater than zero, there might not be  any expo-
nent bits, because the regime bits can crowd some or all of them off the right end of the number!
For  example,  011111  has  no  exponent  bits,  and  neither  does  011110.  Exponent  bits  start  to
appear for shorter runs of regime bits, like 011100 and 011101.

In the following code, the run of regime bits is terminated by the opposite bit, so we skip over that
termination  bit  and  look  at  the  next  es  bits  or  however  many  are  left,  whichever  is  smaller.  The
result can be anything from the empty set, { }, to a sequence of bits of length es.

exponentbits[p_ /; positQ[p]] :=
Module[{q = twoscomp[1 - signbit[p], p], bits, startbit},
startbit = Length[regimebits[q]] + 3;
bits = IntegerDigits[q, 2, nbits];
If[startbit > nbits, {},
Take[bits, {startbit, Min[startbit + es - 1, nbits]}]]]

There  is  no  “bias”  in  these  exponent  bit  strings  as  there  is  with  floats,  so  the  power  of  2  they
express is simply an unsigned integer. Exponent bits are color-coded blue (RGB value 0.25, 0.5,
1). If the exponent bits are 110 = 6, that means 26 is the scale factor contributed by the exponent
bits.  If  there are  no exponent  bits,  then the exponent  is  zero and the scale  factor  contributed by
the exponent bits is 20 = 1.

2.5 Extracting the fraction bits

Once we have the fraction bits, we have all four parts of the posit bit string and can directly com-
pute  the  value it  represents.  The fraction  bits  are  all  the  bits  to  the  right  of  the  exponent,  if  they
haven’t been crowded off the right end by the other bits. (If they have, the value of the fraction is 1.
In other words, the hidden bit is always 1, even if there is no place to hide it!) The fractionbits
function differs from exponentbits only in using a value for startbit that is es bits farther to the
right,  and in  taking all  remaining bits  instead of  stopping at  a  set  maximum number.  This  is  how
posits have variable accuracy depending on the scale factor. If the scale factor is small, there will
be  plenty  of  bits  to  express  a  highly-accurate  fraction.  The  bigger  or  smaller  the  magnitude  of  a
posit, the fewer bits remain for accuracy.

fractionbits[p_ /; positQ[p]] :=
Module[{q = twoscomp[1 - signbit[p], p], bits, startbit},
startbit = Length[regimebits[q]] + 3 + es;
bits = IntegerDigits[q, 2, nbits];
If[startbit > nbits, {}, Take[bits, {startbit, nbits}]]]

The color-coding of the fraction bits is simply to leave them black.

2.6 Assembling the pieces: the p2x function

Following the naming conventions of the Type I unum prototype environment, we call the function
that  changes a  posit  bit  string  p into  a  mathematical  value  x  the  p2x  function.  It  puts  the  pieces
together as follows:

Posit value represented by signed integer p =

p = 0, 0,
p = -npat /2, ±∞,
all other p, (-1)s×useedk×2e× f

where s = the sign bit, k is the integer represented by the regime bits, e is the integer represented
by the exponent bits, and f is the fraction (including the hidden bit, which is always 1.) The follow-
ing routine extracts s, k, e, and f, and then applies the above formula. 
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where s = the sign bit, k is the integer represented by the regime bits, e is the integer represented
by the exponent bits, and f is the fraction (including the hidden bit, which is always 1.) The follow-
ing routine extracts s, k, e, and f, and then applies the above formula. 

p2x[p_ /; positQ[p]] :=
Modules = (-1)signbit[p], k = regimevalue[regimebits[p]],

e = exponentbits[p], f = fractionbits[p],
e = Join[e, Table[0, es - Length[e]]];
(* Pad with 0s on the right if they are clipped off. *)

e = FromDigits[e, 2];
Iff ⩵ {}, f = 1, f = 1 + FromDigits[f, 2] × 2-Length[f]

;
Which
p ⩵ 0, 0,
p ⩵ npat / 2, ComplexInfinity, (* The two exception values, 0 and ±∞ *)

True, s × useedk × 2e × f

(Since  Mathematica  doesn’t  support  2’s  complement  integers,  the  test  for  ±∞  is  if  p  is  npat/2
instead of –npat /2. And we use ComplexInfinity as Mathematica’s equivalent for ±∞.)

The  “colorcodep”  function  makes  the  posit  binary  strings  easier  to  read  by  first  showing  the
original bits, and then coloring the bit fields for either that number or its 2’s complement if it is on
the left half of the projective real circle.

colorcodep[p_ /; positQ[p]] := Module[{s = signbit[p],
r = regimebits[p], e = exponentbits[p], f = fractionbits[p]},

Row[{IntegerString[p, 2, nbits], "→",
Style[If[s ⩵ 0, "+", "-"], ],
Style[Row[r], ],
If[Length[r] ≤ nbits - 2, Style[1 - r〚1〛, ], ""],
If[Length[e] > 0, Style[Row[e], ], ""],
If[Length[f] > 0, Row[f], ""]}]]

We need at least two exponent bits to demonstrate how the exponent bits can be crowded out by
the regime bits, so we will  change the environment to {6, 2}, and create a table of every possible
bit  string and what  it  means.  The table  starts  with  the bit  string representing the smallest  signed
integer (100000 is –32), counts up to zero, and keeps going to the largest signed integer (011111
is +32):
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setpositenv[{6, 2}];
Table[Row[{colorcodep[u + j], " ", p2x[u + j], " "}],

{u, 0, 31}, {j, 32, 0, -32}] // TableForm

100000→-00000 ComplexInfinity 000000→+00000 0

100001→-11111 -65536 000001→+00001 1

65536

100010→-11110 -4096 000010→+00010 1

4096

100011→-11101 -1024 000011→+00011 1

1024

100100→-11100 -256 000100→+00100 1

256

100101→-11011 -128 000101→+00101 1

128

100110→-11010 -64 000110→+00110 1

64

100111→-11001 -32 000111→+00111 1

32

101000→-11000 -16 001000→+01000 1

16

101001→-10111 -12 001001→+01001 3

32

101010→-10110 -8 001010→+01010 1

8

101011→-10101 -6 001011→+01011 3

16

101100→-10100 -4 001100→+01100 1

4

101101→-10011 -3 001101→+01101 3

8

101110→-10010 -2 001110→+01110 1

2

101111→-10001 - 3

2
001111→+01111 3

4

110000→-10000 -1 010000→+10000 1

110001→-01111 - 3

4
010001→+10001 3

2

110010→-01110 - 1

2
010010→+10010 2

110011→-01101 - 3

8
010011→+10011 3

110100→-01100 - 1

4
010100→+10100 4

110101→-01011 - 3

16
010101→+10101 6

110110→-01010 - 1

8
010110→+10110 8

110111→-01001 - 3

32
010111→+10111 12

111000→-01000 - 1

16
011000→+11000 16

111001→-00111 - 1

32
011001→+11001 32

111010→-00110 - 1

64
011010→+11010 64

111011→-00101 - 1

128
011011→+11011 128

111100→-00100 - 1

256
011100→+11100 256

111101→-00011 - 1

1024
011101→+11101 1024

111110→-00010 - 1

4096
011110→+11110 4096

111111→-00001 - 1

65536
011111→+11111 65536

3 Visualizing the Projective Reals

Posits4.nb     15



3 Visualizing the Projective Reals

3.1 The smallest posit size with a useed

Unlike  the  real  number  line,  the  projective  reals  wrap  the  line  onto  a  circle  so  that  negative  and
positive infinity meet at the top.

Sometimes the way things were invented is not the easiest way to understand them, which is why
we first showed the bit fields in Section 2, and only now show their geometrical derivation. Type III
posit arithmetic is derived from Type II unums that also map binary integers to the projective reals,
but in Type III we relax the requirement that all values have an exact reciprocal. Both Type II and
Type III unums start with this two-bit template:

00

01

10

11 -1 1

±∞

0

The 2’s complement signed integers around the outside of the ring wrap from positive to negative
at  exactly  the  same  point  the  real  numbers  do.  This  eliminates  “negative  zero”;  it  unfortunately
takes away –∞ and +∞ as distinct quantities, but the workarounds for that are much simpler than
having to deal with two forms of zero that are sometimes considered equal and sometimes treated
differently, which is what IEEE floats do.

The  above  ring  is  only  two  bits,  yet  it  represents  a  number  system.  We  move  to  three  bits  by
inserting a value between 1 and ±∞. It could be real number greater than 1; it could be 2, or 10, or
π, or 1.00003, or 10100. The choice “seeds” the way the rest of the ring of unums gets populated,
so we call it the useed. We follow Type II rules and make sure negation reflects about the vertical
axis and reciprocation reflects about the horizontal axis.
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000

001

010

011

100

101

110

111

-1 1

±∞

0

useed-useed

1/useed-1/useed

For the next step, what should we put between useed and ±∞? Well, useed 2 certainly works. We
then  could  get  an  elegant  new  symmetry  by  putting  useed1/2 = useed  between  1  and  useed,

especially if useed  is an integer that fits computer hardware nicely. If useed  is an integer,
we can repeat the process.

The useed values that are computer hardware-friendly are 2, 22, 22
2, etc., repeatedly squaring to

make sure we can repeatedly take the square root and get back to 2. The number series is 2, 4,
16, 256, 65536,…. Between 1 and 2 we can populate the ring linearly, that is, {1, 1.5, 2} if we have
one  more  bit,  or  {1, 1.25, 1.5, 1.75, 2}  if  you  have  two  more  bits,  and  so  on,  exactly  the  way  a
floating-point fraction works. The number of times you square to get useed, starting with the value
2, is es. This is why useed = 22es

.

The ringplot routine shows posits representing projective real numbers arranged on a ring, with
their  mathematical  form  on  the  inside  and  the  color-coded  binary  form  on  the  outside.  It  uses
whatever nbits and es environment settings are in place. We switch to rotated text so we can cram
more values into the space, even though it makes it slightly peculiar to read. Try it for nbits = 3 and
es = 1:
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setpositenv[{3, 1}]; ringplot
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If the ring were the points of a compass, +1 is always east, –1 is west, 0 is south, and ±∞ is north.
The value of useed  is always at the northeast point of the compass. Reflecting about the vertical
axis  always  gives  the  negative  of  every  number.  Reflecting  about  the  horizontal  axis  gives  the
exact  reciprocal  for  0,  ±∞,  and  all  powers  of  two;  it  gives  the  approximate  reciprocal  for  values
between powers of two; the value represented by the horizontal reflection of a posit value x ranges
from 1

x
 to 1.125

x
 in all cases.

These unums have a recursive definition. In appending a bit by increasing nbits, appending 0 does
not  change  the  value;  appending  1  creates  a  new  point  on  the  circle  midway  between  existing
values, with the following rules for what value it represents:
◼ If it is next to the bottom of the circle between 0 and ±2 j, the new value is smaller than ±2 j by a

ratio of useed. (The added bit is a regime bit.)
◼ If  it  is next to the top of the circle between ±2 j  and ±∞,  the new value is larger  than ±2 j  by a

ratio of useed. (The added bit is a regime bit.)
◼ If it is between two values of magnitude 2i  and 2 j  where integers i and j differ by more than 1,

the new value has magnitude 2(i+ j)2. (The added bit is an exponent bit.)
◼ If  it  is  between  any  other  adjacent  points  x  and  y,  it  represents  (x + y) /2.  (The  added  bit  is  a

fraction bit.)

3.2 Introducing exponent bits

The system for adding new points on the ring is simpler than it sounds. Check the color coding for
a 4-bit posit; the exponent bits start to show up in the east and the west parts of the ring:
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setpositenv[{4, 1}]; ringplot
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Notice that every value in the previous ring plot stays in place, with a 0 appended to its representa-
tion. The new values are between the previous ring plot values, and end in a 1 bit. This is one of
the beautiful properties of these numbers; they stay put when increasing precision by appending a
0 bit, and the in-between points created by appending a 1 bit automatically increase both dynamic
range (top and bottom) and accuracy (left and right).

Another thing you can notice is that the first  two bits always determine the quadrant  of  the circle
where the number resides.  As with  Type II  unums,  think of  them as the sign-reciprocal  bits.  The
first two bits are 

00 in the southeast, 0 ≤ x < 1
01 in the northeast, 1 ≤ x <∞,
10 in the northwest, -∞ < x < -1,
11 in the southwest, -1 ≤ x < 0.

That  also  might  help  explain  how  hardware  can  decode  the  regime  bits  without  taking  the  2’s
complement of a number first.

3.3 Fraction bits appear

The next step takes us to five bits, and then the complete pattern emerges. At the top and bottom
of  the  circle,  adding  a  bit  always  extends  the  dynamic  range  by  a  factor  of  useed  larger  and
smaller. At the right and the left sides of the circle, adding a bit always now adds one bit of preci-
sion to the fraction. With five bits, we now see fraction bits appear in the eastern and western parts
of the projective real circle.
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setpositenv[{5, 1}]; ringplot
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If you increase the number of bits in an IEEE float, you have to decide how many bits to increase
in the exponent  and how many in  the fraction.  Changing the number  of  IEEE exponent  bits  also
means changing the bias  in the exponent,  so in general  it  is  a complicated thing to convert  from
one IEEE precision to another. That is also true for Type I unums. With Type III posits, it is trivial:
you just add bits to the right. Adding bits to the end of a posit increases dynamic range at the north
and south parts of the ring, and accuracy at the east and west parts of the ring. This suggests that
a calculation can very easily change the environment settings as it progresses.

In the above plot, notice that numbers ending with fraction bits do not have perfect reciprocals in
their reflected quantity. Close, but not quite. The reflection of 3/2 is 3/4, not 2/3. The reflection of 3
is 3/8, not 1/3. The reflected posit value is still an excellent starting point for an iterative method for
computing the reciprocal. Relaxing the requirement that reciprocals be perfect for every number is
what makes posits simple and hardware-friendly, by restricting all finite numbers to the form 2m×n
where m and n are integers.

3.4 A six-bit ringplot

If we attempt 6 bits, the ringplot is still readable.
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setpositenv[{6, 1}]; ringplot
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3.5 A seven-bit ringplot shows a million-to-one dynamic range

Pushing the graphics to the point where the values almost overlap but are still legible, a 7-bit posit
with  a  1-bit  exponent  field  can  have  a  dynamic  range  of  six  orders  of  magnitude,  yet  also  have
more than one decimal of relative accuracy for points near ±1.
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setpositenv[{7, 1}]; ringplot
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Perhaps this is a good place to point out how rounding is subtly different from what it is for floats. If
the rounded bit is a fraction bit, it’s exactly the same as for floats. Round to the nearest value, and
if  there’s  a  tie,  pick  the  number  ending  in  a  0  bit.  But  suppose  a  calculation  landed  between  64
and 256; what is the midpoint where we decide if we round up or down? Notice that the rounded
bit  there  is  an  exponent  bit,  so  you are  rounding to  the  nearest  exponent.  For  the  hardware,  it’s
exactly  the same algorithm as when rounding fraction bits.  The midpoint  between 64 and 256,  if
we  had  one  more  bit  of  precision,  is  128.  Numbers  between  64  and  128  round  to  64;  numbers
between 128 and 256 round to 256; the exact value 128 is a tie, and 64 is the posit ending in a 0
bit, so 128 rounds to 64.

The  rounding  rules  are  therefore  consistent,  except  for  results  near  the  exception  values  0  and
±∞. Never round toward those extremes. Use -minpos, minpos, -maxpos, or maxpos instead. At
the very least, that preserves the correct sign of the answer.
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3.6 Sneak Preview: Valid Arithmetic

One reason for carrying ringplots all the way to seven bits is that the one above forms an excellent
basis for 16-bit valids. As a preview to the world of powerful, guess-free arithmetic, valids are pairs
of  posits  that  each have an uncertainty  bit,  or  ubit  appended to  the fraction,  forming a tile.  Ubits
are color-coded in magenta (RGB 1, 0, 1). The ubit is 0 for all the values shown above, and 1 for
all the open intervals between the values shown above. A possible 16-bit valid format is a pair of 7-
bit posits with ubits at the end of each one, like this:

s

sign

u

ubitregime

r ⋯ r

exponent

e1⋯ ees

fraction

f1⋯ s

sign

u

ubitregime

r ⋯ r

exponent

e1⋯ ees

fraction

f1⋯

Lower tile Upper tile

(Again  we  use  a  general  es  value  for  the  purpose  of  illustration.  The  es  value  for  such  a  small
number of bits would almost certainly be 0. In the ringplot above, es is 1.)

Each tile can be any value shown in the above ring of 7-bit posits, followed by a 0 ubit or a 1 ubit.
Conventional  interval  arithmetic  is  in  the form of  closed intervals  [a, b]  where a  and b  are  floats,
and a ≤ b.  In the case of valids The endpoints need not be ordered.  The lower tile says where to
start on the ring; the interval represented includes all tiles counterclockwise from the lower tile until
you reach the upper tile, which is also included in the set; it wraps around the circle, crossing ±∞ if
necessary! This allows representation of closed, open, and half-open intervals, and because of the
use  of  the  projective  reals,  contiguous  intervals  remain  contiguous  under  addition,  subtraction,
multiplication, and division. For example, the half-open interval (-1 /4, 1 /16] in the {8, 1} environ-
ment of the above ringplot is represented by the pair of tiles

111000111→–00111011, representing the tile (-1 /4, -7 /32), and
001000000→–00100000, representing the tile 1 /16.

That’s a compact way to say the set of all tiles between the two points:

(-1 /4, -7 /32), -7 /32, (-7 /32, -3 /16), -3 /16, …, 3 /64, (3 /64, 1 /16), 1 /16.

To  reiterate:  posits  are  for  where  floats  are  good  enough,  and  the  algorithms  have  been  shown
reliable enough to satisfy user requirements. In contrast, valids are for where you need a provable
bound on the answer. Or when you are still  developing an algorithm and debugging its numerical
behavior.  Or  where  you  want  to  describe  sets  of  real  numbers  and  not  just  point  values.  The
algorithms for  valids are often quite  different  from the ones for  floats,  and vice versa.  Valids can
express a rich source of exception conditions that are useful for debugging, such as the empty set,
the entire set of real numbers, or trigger a halt when the interval has gotten too wide (as set by the
user) to be useful. Details about the use of valids are discussed elsewhere, but for now the inter-
ested reader is referred to The End of Error: Unum Arithmetic and its discussion of "ubounds."
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3.7 Visualizing the regime bits on the projective real ring

Now that we have shown how reals and integers map geometrically onto a ring, we can visualize
the regime bits in particular, by looking at the right half of the ring and showing how the powers of
useed crowd together at the top and bottom of the ring:
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It takes some getting used to, but the regime-exponent pair describes a scale factor of a power of
2 the same way the exponent (minus the bias) does for IEEE Standard floats.

If es is 1 or more, we could put useed 0.5 between 1 and useed, and useed1.5 between useed  and
useed 2,  and  so  on.  If  es  is  2  or  more,  we  get  equal-spaced  values  useed 0.25,  useed 0.5  and
useed 0.75  between  1  and  useed.  In  other  words,  the  exponent  bits  are  the  fraction  bits  of  the
power of useed represented by the regime bits.
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useed 2,  and  so  on.  If  es  is  2  or  more,  we  get  equal-spaced  values  useed 0.25,  useed 0.5  and
useed 0.75  between  1  and  useed.  In  other  words,  the  exponent  bits  are  the  fraction  bits  of  the
power of useed represented by the regime bits.

4 Converting values into posits

4.1 Building the x2p conversion function

The method for  converting any real  value into posit  representation is  very similar  to the way you
could  convert  a  number  of  any  type  into  a  float.  After  checking  for  exceptions  cases  (which  for
posits is simply 0 and ±∞), the number is divided by two or multiplied by two until it is in the inter-
val  [1, 2),  which  then  determines  the  fraction.  In  the  case  of  posits,  the  useed  is  a  kind  of
“batched” form of powers of two, so we first divide by useed  or multiply by useed  until  it  is in the
interval  [1, useed).  Then  the  value  is  repeatedly  divided  by  2  until  it  is  in  the  interval  [1, 2),  and
that determines the exponent. The exponent will always be nonnegative, eliminating the need for a
bias. The fraction always has a leading 1 bit to the left of the binary point, eliminating the need to
handle subnormal exception values that have a 0 bit to the left of the binary point.

The approach could be used to convert a fixed point number, an integer, a float, or any other type
that  can be repeatedly  multiplied  or  divided by  two until  it  is  in  the  range [1, 2).  In  Mathematica,
values are generic “numeric” values, and we need only include values of infinite magnitude in the
set  of  allowed numeric  types to  assure that  it  is  possible  to  turn  it  into  a  posit.  The positableQ
function returns True if its argument can be turned into a posit, and False otherwise.

positableQ[x_] := (Abs[x] ⩵ ∞ x ∈ Reals)

Finally, here is the function that runs a real number into its posit form.
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x2p[x_ /; positableQ[x]] := Modulei, p, e = 2es-1, y = Abs[x],
Which(* First, take care of the two exception values: *)

y ⩵ 0, 0, (* all 0 bits s *)

y ⩵ ∞, BitShiftLeft[1, nbits - 1], (* 1 followed by all 0 bits *)

True, If[y ≥ 1, (* Northeast quadrant: *)

p = 1;
i = 2; (* Shift in 1s from the right and scale down. *)

While[y ≥ useed i < nbits, {p, y, i} = {2 p + 1, y / useed, i + 1}];
p = 2 p; i++, (* Else, southeast quadrant: *)

p = 0;
i = 1; (* Shift in 0s from the right and scale up. *)

While[y < 1 i ≤ nbits, {y, i} = {y * useed, i + 1}];
If[i ≥ nbits, p = 2;
i = nbits + 1, p = 1;
i++]];

(* Extract exponent bits: *)

While[e > 1 / 2 i ≤ nbits, p = 2 p;
If[y ≥ 2e, y /= 2e;
p++];

e /= 2; i++];
y--; (* Fraction bits; subtract the hidden bit *)

While[y > 0 i ≤ nbits, y = 2 y; p = 2 p + ⌊y⌋; y -= ⌊y⌋; i++];
p *= 2nbits+1-i;
i++;
(* Round to nearest; tie goes to even *)

i = BitAnd[p, 1]; p = ⌊p / 2⌋;
p = Which[

i ⩵ 0, p, (* closer to lower value *)

y ⩵ 1 y ⩵ 0, p + BitAnd[p, 1], (* tie goes to nearest even *)

True, p + 1 (* closer to upper value *)];
Mod[If[x < 0, npat - p, p], npat (* Simulate 2's complement *)]





The  x2p  function  is  mostly  written  with  a  vocabulary  designed  to  translate  easily  into  low-level
operations in C, or to chip-level circuitry. When you see a line like “p=2p+1”, that would be best
expressed as p=(p<<1)||1  in C; in Mathematica,  p=BitOr[BitShiftLeft[p,1],1]  seems too
verbose, so we write it with arithmetic that accomplishes the intended bit logic.

4.2 The sigmoid function

Here are some visualizations of the x2p function that also help test its correctness. First, a plot of
the two’s complement integer produced as the argument ranges from –maxpos to maxpos:
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As Isaac Yonemoto has observed, this plot is similar to the kind of “sigmoid” function that Machine
Learning  requires  for  deep learning  neural  networks.  It  simply  needs  to  be  scaled  and shifted  to
range from 0 to 1. This mapping is trivially achieved by flipping the first bit of the posit and shifting
it right two places, requiring perhaps four transistors of circuitry and easily fitting into a single clock
cycle for  a processor.  The Machine Learning community  presently  has two options:  It  can calcu-
late exponentials like 1

1+ⅇ-x  for this, requiring quite a few clock cycles:

-20 -10 10 20
x

0.2

0.4

0.6

0.8

1.0

1

ⅇ-x +1

…or,  it  can  use  a  piecewise  linear  approximation,  which  can  lead  to  problems  with  the  conver-
gence of the training.

Here is the one-cycle low-precision posit function plotted in magenta, and the 1 / (ⅇ-x + 1)  function
in green. The slopes match at x = 0.
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4.3 Restricting to the posit vocabulary with the overbar operator

The easiest  way to  prototype what  a  posit  environment  will  do is  to  let  Mathematica  perform the
operations,  but  always  restrict  the  numerical  vocabulary  to  what  the  posit  environment  supports.
We can define the overbar function to do the restriction for us. Convert the real to the closest posit,
then convert that back to a real to accomplish this; also, we make it a function that can work on a
list of numbers, not just a single number, which will save a lot of code when we do linear algebra.

x_ := p2x[x2p[x]];
SetAttributes[OverBar, Listable]

For example, here is how we can find the nearest posit value of π in a {10, 1} environment:

setpositenv[{10, 1}]
π

N[%]

101

32

3.15625

Think of Mathematica as the “g-layer” where there are no rounding errors, and the overbar opera-
tor  as  what  brings  us  back  to  the  “u-layer”  with  unum  representation  of  limited  accuracy.  This
system will prove quite convenient as a rapid prototype for an actual posit computing environment.

Since x2p and p2x are approximately inverse functions, we can compare plots of y = x  with y = x
and get  a stair-step function that  criss-crosses the y = x  line.  It  looks pretty good on a linear plot
from zero to one:
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Test  the  range around -minpos  to minpos,  to make sure that  exceptions near zero are handled
correctly. Notice that there is no “round to zero” for small numbers, or underflow:

-0.06 -0.04 -0.02 0.02 0.04 0.06

-0.06

-0.04

-0.02

0.02

0.04

0.06

For the  range from -maxpos to maxpos, a log-log plot is used to make the graph easier to read.
Let’s  actually  go  from  -2 maxpos  to  2 maxpos,  to  check  that  values  never  “round”  to  infinity
(overflow).
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5 Creating an IEEE 754 float environment

5.1 The two parameters that specify a float environment

We can do something very similar for IEEE-type floats that we did to set up the posit environment.
However,  unlike  IEEE floats,  we  can  have  very  flexible  sizes  for  the  total  number  of  bits,  nfbits,
and  the  number  of  bits  in  just  the  exponent,  esize.  The  number  of  bits  in  the  fraction,  fsize,  is
always a constant since there is simply a sign bit, exponent bits, and fraction bits totaling to nfbits.
The  values  we  need  for  easy  number  conversion  are  things  like  the  bias  in  the  exponent,  the
smallest subnormal float, the smallest normalized float, the largest finite float, and the largest finite
value  that  rounds  down  to  the  largest  finite  float  instead  of  overflowing  to  infinity.  (The  smallest
finite value that rounds up to the smallest subnormal is half the smallest subnormal; smaller values
underflow to zero.)

setfloatenv[{n_Integer /; n ≥ 4, e_Integer /; e ≥ 2}] :=

{nfbits, esize, fsize} = {n, e, n - e - 1};

bias = 2esize-1 - 1;
smallsubnormal = 21-bias-fsize;
smallnormal = 21-bias;

maxfloat = 2bias 1 +
2fsize - 1

2fsize
;

minroundable = smallsubnormal / 2;

maxroundable = 2bias 1 +
2fsize - 1 / 2

2fsize
;

For example, set an environment for 6 bits per number and 2 exponent bits:
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For example, set an environment for 6 bits per number and 2 exponent bits:

setfloatenv[{6, 2}]

Here are the values set by that environment setting:

{nfbits, esize, fsize, bias, smallsubnormal,
smallnormal, maxfloat, minroundable, maxroundable}

6, 2, 3, 1,
1

8
, 1,

15

4
,

1

16
,
31

8


Notice that  we can independently  specify  a posit  environment  and a float  environment.  The vari-
able names do not overlap. This allows us to do side-by-side benchmarking of various algorithms
with floats and with posits.

When floats  have  only  one  exponent  bit,  they  act  a  lot  like  fixed-point  numbers,  because  all  the
finite  values  are  subnormal.  That  creates  difficulties  with  the  IEEE  rules;  for  example,  maxfloat
becomes smaller than smallnormal, but the bit pattern for smallnormal is the one IEEE says must
be used to represent infinity! The easiest fix to such craziness is simply to require that esize be 2
or greater. We also need the sign bit, and at least one fraction bit (otherwise there is no distinction
between infinity  values and NaN values).  So the smallest  possible value for  nfbits  is  4.  Here are
the  values represented by the 16 possible bit patterns for nfbits = 4, just for fun:

0000 0 “Positive zero”
0001 1

2 smallsubnormal
0010 1 smallnormal
0011 3

2

0100 2
0101 3 maxfloat
0110 ∞ Infinity
0111 NaN Quiet NaN
1000 0 “Negative zero”
1001 -

1
2 -smallsubnormal

1010 -1 -smallnormal
1011 -

3
2

1100 -2
1101 -3 -maxfloat
1110 -∞ Minus infinity
1111 NaN Signalling NaN

5.2 The function that converts a float to its numerical value: f2x
Now we need the equivalent of p2x, which we can call f2x, that takes a bit string representing a
float (the first column in the above table) and returns its mathematical value (the second column).
The routine is more complicated than for posits, because of having five exception cases, which is
one reasons floats consume more circuitry than posits:
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Now we need the equivalent of p2x, which we can call f2x, that takes a bit string representing a
float (the first column in the above table) and returns its mathematical value (the second column).
The routine is more complicated than for posits, because of having five exception cases, which is
one reasons floats consume more circuitry than posits:

Float value =

e = all 1 bits,
f = 0, (-1)s ∞,
f ≠ 0, NaN of some kind,

e = all 0 bits,
f = 0,

s = 0, "Positive zero",
s = 1, "Negative zero",

f ≠ 0, (-1)s×21-bias× f ,

all other e, (-1)s×2e-bias×(1 + f ).

where s  = the sign bit,  e  is the integer represented by the exponent bits as an unsigned integer,
and f  is  the fraction,  not  including the hidden bit.  The following routine extracts  the bit  fields and
then applies the above formula.

We cannot  return  “positive  zero”  and “negative  zero”  because they  are  not  mathematical  quanti-
ties. By IEEE rules, their reciprocals are positive infinity and negative infinity, respectively, yet they
are supposed to test as equal to each other! Other quirky personality traits have been assigned to
the two kinds of zero, such as requiring that the square root of “negative zero” be “negative zero.”
It is little wonder that the handling of these two non-mathematical quantities are such a rich source
of hardware design errors for the floating-point processing unit (FPU) in a processor. Here, we just
assign zero to both cases (the mathematical  kind of zero),  but later on when figuring out closure
plots, we again have to accommodate IEEE rules for the two concepts that are… zero. Sort of.

f2xf_Integer /; 0 ≤ f < 2nfbits :=
Module{emask = FromDigits[Table[1, esize], 2],

exp, fmask = FromDigits[Table[1, fsize], 2],
frac, sgn, smask = BitShiftLeft[1, nfbits - 1]},

sgn = BitShiftRight[BitAnd[smask, f], nfbits - 1];
exp = BitAnd[BitShiftRight[f, fsize], emask];
frac = BitAnd[fmask, f];
Which
exp ⩵ emask, If[frac ⩵ 0, (-1)sgn × ∞, Indeterminate],
exp ⩵ 0, (-1)sgn × 21-bias × frac  2fsize,
True, (-1)sgn × 2exp-bias × 1 + frac  2fsize

5.3 Converting numbers into floats

We’re  almost  done;  the  final  step is  to  create  x2f,  so  that  we have a  way of  converting  a  value
(possibly NaN or infinite) into the IEEE-style float. A “floatable” value is a real number, or a signed
infinity, or a NaN (which Mathematica calls Indeterminate). Here’s the test for that:
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floatableQ[x_] := (x === Indeterminate x === ∞ x === -∞ x ∈ Reals)

We can use that to guard the conversion function from trying to do something it shouldn’t attempt.

x2f[x_ /; floatableQ[x]] := Module{e = 0, f, sgn, y},
Which
x === Indeterminate¬ floatableQ[x],
FromDigits[Table[1, nfbits], 2], (* NaN exceptions *)

y = Abs[x];
sgn = BitShiftLeft[Boole[x < 0], nfbits - 1];
y ⩵ 0, 0, (* Zero exception *)

y ≥ maxroundable,
BitOr[sgn, BitShiftLeft[FromDigits[Table[1, esize], 2], fsize]],
(* Infinity and overflow exceptions *)

y < smallnormal, BitOr[sgn, Round[y / smallsubnormal]],
(* subnormal exceptions *)

True, (* Else x is normal. Find the exponent and fraction fields. *)

(* At most one of the next two While loops will execute. *)

While[y ≥ 2, y /= 2; e++];
While[y < 1, y *= 2; e--];
(* We now have 1 ≤ y < 2. *)

f = Round(y - 1) * 2fsize;
(* This may round up to 2, so we add f, instead of ORing it. *)

BitOr[sgn, BitShiftLeft[bias + e, fsize]] + f

It may become handy to have a colorcodef operator to see the bit fields of a float, just as we did
with posits.

colorcodef[f_ /; floatableQ[f]] :=
Module[{fbits = IntegerDigits[f, 2, nfbits]},
Row[{ Style[fbits〚1〛, ], "", Style[Row[Take[fbits, {2, esize + 1}]], ],

"", Row[Take[fbits, -nfbits + esize + 1]]}]]

We  last  left  the  setfloatenv  setting  at  {6, 2}.  Let’s  test  the  color-coding  of  a  float  represented
with 001101, which as a float in this tiny environment represents 1.625:

colorcodef[2^^001101]
N[f2x[2^^001101]]

001101

1.625

5.4 Restriction to a float vocabulary: the underbar operator

Just  as  we  defined  an  overbar  operator  to  restrict  the  numerical  vocabulary  to  posits,  we  can
define the underbar to restrict values to floats:
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Just  as  we  defined  an  overbar  operator  to  restrict  the  numerical  vocabulary  to  posits,  we  can
define the underbar to restrict values to floats:

x_ := f2x[x2f[x]]
SetAttributes[UnderBar, Listable]

Again use π as an example, within the current {6, 2} float environment:

π

N[%]

13

4

3.25

Let’s do two quick graphics tests like the ones done for posits. First, the graph near zero, including
all the subnormal values:

x

y = x
y = x
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-3

-2

-1

1

2

3

And now the graph from 1 to maxfloat, where we use a log-log plot to better show the zig-zag over
a changing scale:
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It is worth noting that for posits, it is always true the x2p[p2x[p]] returns p, whereas for floats, it
is  not  possible  to  achieve  such  a  perfect  inverse  with  x2f[f2x[f]]  and  f.  Exceptions  occur  for
“negative zero” and for the multiple ways of representing NaN.

6 Floats vs. Posits Preview: Accuracy on a 32-bit budget
Before we go through a litany of comparisons of posits and floats, let’s have a pre-game match. If
we evaluate the expression

27/10-ⅇ

π- 2 + 3

67/16

correct  to  ten  decimals,  it  is  302.8827196⋯.  We  can  compare  the  accuracy  we  get  with  32-bit
standard IEEE floats and 32-bit posits that have at least as large a dynamic range.

First,  try  the  single-precision  float  environment,  which  by  the  IEEE  Standard  uses  8  bits  for  the
exponent:

setfloatenv[{32, 8}]

IEEE 32-bit floats have an unbalanced dynamic range of about 83 decades:
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N[{smallsubnormal, maxfloat}]
Log[10., maxfloat / smallsubnormal]

1.4013 × 10-45, 3.40282 × 1038

83.3853

For  each  step  in  the  calculation,  the  Mathematica-type  real  values  are  turned  into  floats,  which
means  in  general  they  are  rounded.  The  accbenchf  and  accbenchp  functions  do  not  take  an
argument, since they rely only on the environment settings. Notice how the underscore and over-
bar notations let  us write normal-looking equations,  and explicitly  round every result  to a number
within the float or posit vocabulary.

accbenchf := Modulete = ⅇ, t2710 = 27 / 10, tpi = π,

tr2 = 2 , tr3 = 3 , tnum, t1, tden, t2, t6716, tans,
tnum = t2710 - te;
t1 = tr2 + tr3;
tden = tpi - t1;
t2 = tnum / tden;
t6716 = 67 / 16;
tans = t2t6716;
Print[Style[Row[{"Float answer to ", nfbits - esize, " decimals: "}],

"Text"], N[tans, nfbits - esize]];
PrintStyle["Rounding error in answer: ", "Text"],

N(27 / 10 - ⅇ)  π -  2 + 3 
(67/16)

- tans

Try it out on IEEE Standard 32-bit floats, single precision:

accbenchf

Float answer to 24 decimals: 302.912414550781250000000
Rounding error in answer: -0.0296949

IEEE single  precision gives us  the answer  302.912⋯,  which is  off  by  about  0.0297.  We use the
convention of coloring the decimal digits orange that differ from the decimal digits representing the
correct answer. Although single precision floats have a nominal accuracy of about seven decimals,
that accuracy quickly erodes away in this simple expression, and we are left with only three correct
decimals.

Now try posits. The underscores turn to overscores, and the calculation of the denominator tden
has  rounding  deferred,  since  posits  can  sum long  lists  of  numbers  in  the  quire  (more  about  that
later).
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accbenchp := Modulete = ⅇ, t2710 = 27 / 10, tpi = π,

tr2 = 2 , tr3 = 3 , tnum, t1, tden, t2, t6716, tans,

tnum = t2710 - te;
tden = tpi - (tr2 + tr3); (* Posits allow this kind of fused operation *)

t2 = tnum / tden;
t6716 = 67 / 16;
tans = t2t6716;
Print[Style[Row[{"Posit answer with es = ", es, ": "}], "Text"],
N[tans, nbits - es - 9]];

PrintStyle["Rounding error in answer: ", "Text"],

N(27 / 10 - ⅇ)  π -  2 + 3 
(67/16)

- tans, "\n"

Let’s try a range of es values to see where the sweet spot is. 

For[i = 0, i ≤ 5, i++, setpositenv[{32, i}]; accbenchp]

Posit answer with es = 0: 302.88171386718750000000
Rounding error in answer: 0.00100579

Posit answer with es = 1: 302.8827819824218750000
Rounding error in answer: -0.0000623271

Posit answer with es = 2: 302.883300781250000000
Rounding error in answer: -0.000581126

Posit answer with es = 3: 302.88231658935546875
Rounding error in answer: 0.000403066

Posit answer with es = 4: 302.8883361816406250
Rounding error in answer: -0.00561653

Posit answer with es = 5: 302.872161865234375
Rounding error in answer: 0.0105578

All  of  these  answers  are  much  more  accurate  than  the  float  answer!  When  es = 1,  the  posit
answer  has four  more correct  decimals  for  the same number  of  bits,  302.882781⋯.  The error  is
smaller than the float error by a factor of almost 500. When es = 3, for which the dynamic range is
almost  twice that  of  floats (144 decades instead of  83),  the posits  are more accurate by about  a
factor of 74.

This “Accuracy on a 32-Bit Budget” example gives a preview of why switching from floats to posits
might  be  worth  the  trouble.  There  may  be  many  applications  where  32-bit  floats  are  not  quite
accurate enough, forcing programmers to jump all the way to 64-bit floats instead. If 32-bit posits
can  achieve  more  decimals  of  accuracy,  they  may  allow  the  use  of  32-bit  variables  and  thereby
provide a 2x savings in bandwidth, storage, and the energy and power needed to move the data.

The next  section will  create two complete number sets with float  rules and posit  rules,  and com-
pare properties of their complete tables for basic arithmetic.
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All  of  these  answers  are  much  more  accurate  than  the  float  answer!  When  es = 1,  the  posit
answer  has four  more correct  decimals  for  the same number  of  bits,  302.882781⋯.  The error  is
smaller than the float error by a factor of almost 500. When es = 3, for which the dynamic range is
almost  twice that  of  floats (144 decades instead of  83),  the posits  are more accurate by about  a
factor of 74.

This “Accuracy on a 32-Bit Budget” example gives a preview of why switching from floats to posits
might  be  worth  the  trouble.  There  may  be  many  applications  where  32-bit  floats  are  not  quite
accurate enough, forcing programmers to jump all the way to 64-bit floats instead. If 32-bit posits
can  achieve  more  decimals  of  accuracy,  they  may  allow  the  use  of  32-bit  variables  and  thereby
provide a 2x savings in bandwidth, storage, and the energy and power needed to move the data.

The next  section will  create two complete number sets with float  rules and posit  rules,  and com-
pare properties of their complete tables for basic arithmetic.

7 Posits versus IEEE-type Floats: A Metric-Based Study

7.1 Why Regime Bits increase Accuracy

It  is  obvious  that  regime  bits  are  a  sort  of  “super-exponent”  that  amplify  the  dynamic  range  of
posits  compared  to  floats.  What  is  less  obvious  is  that  they  also  increase  accuracy  by  allowing
more bits “left over” to express the fraction part of a number.

As an example, suppose we have 16 bits and wish to express the number 10000. Half-precision
IEEE floats (5-bit exponent field) can do that without rounding:

setfloatenv[{16, 5}]
10000

10000

As a float, 10000 = 213×1 +
113
512

.  That means we need an exponent that ranges from 2-14  to 214

for normalized floats, which requires an exponent with at least five bits. If we instead represent the
number as a 16-bit posit, consider how 213 would be expressed with different values of es, leaving
off the all-zero fraction bits for clarity:

es 213

0 111111111111110
1 111111101
2 1111001
3 110101
4 101101
5 1001101
6 10001101
7 100001101
etc.

Those  are  all  ways  of  expressing  the  integer  13  as  the  bit  shift  (scaling  by  a  power  of  2).  The
number  of  regime bits  needed  to  express  that  integer  repeatedly  drops  by  about  a  factor  of  two
initially, and then when it hits the minimum two-bit 10 pattern, the exponent bits take over the job
and  the  total  number  of  exponent  bits  ramps  up  linearly.  Hence,  there  is  a  "sweet  spot"  if  we
intend  to  be  dealing  a  lot  with  quantities  near  10000  in  magnitude.  Only  es = 3  or  es = 4  allow
enough fraction bits to let 10000 be represented exactly:
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es = 0 0111111111111110→+111111111111110 closest value to 10000: 8192
es = 1 0111111101001110→+111111101001110 closest value to 10000: 9984
es = 2 0111100100111000→+111100100111000 closest value to 10000: 9984
es = 3 0110101001110001→+110101001110001 closest value to 10000: 10000
es = 4 0101101001110001→+101101001110001 closest value to 10000: 10000
es = 5 0100110100111000→+100110100111000 closest value to 10000: 9984
es = 6 0100011010011100→+100011010011100 closest value to 10000: 9984
es = 7 0100001101001110→+100001101001110 closest value to 10000: 9984
es = 8 0100000110100111→+100000110100111 closest value to 10000: 9984

For  es = 3,  the  dynamic  range  goes  far  beyond  what  16-bit  floats  can  express  and  is  probably
overkill for most low-precision applications:

setpositenv[{16, 3}];
N[{minpos, maxpos}]
Log[10., maxpos / minpos]

1.92593 × 10-34, 5.1923 × 1033

67.4307

That’s enough to do a decent job of representing Avogadro’s number, in case anyone wants to do
low-accuracy but very quick chemistry calculations on molar quantities!

N6.022 × 1023, 3

6.04 × 1023

If  someone  is  using  posit  arithmetic  in  a  field-programmable  gate  array  (FPGA)  for  a  particular
embedded  application  where  it  need  not  be  compatible  with  a  standard  storage  format,  such  as
signal  processing  or  machine  learning,  there  is  no  reason why a  posit  cannot  have,  say,  23  bits
with an es of 6. However, we want to make the transition away from the outdated 1985 float format
as painless as possible, which means standardizing the es values for 16-, 32-, 64-, 128-, and 256-
bit posits. An ambitious hardware engineer might make the es value configurable, but then there is
the issue of language support for the many different data types. Ideally, a C program written many
years ago that uses float and double keywords could simply be recompiled to use 32-bit and 64-
bit  posits,  with a different  math library (the libm.h  include file),  and everything should just  work.
And produce more accurate answers.

7.2 Should we match IEEE float dynamic ranges?

In the current (2008) version of the IEEE 754 standard, there are five binary float sizes: 16, 32, 64,
128, and 256 bits. For some users, it might be important that posits do as well or better than floats
for dynamic range, lest they appear to be sacrificing dynamic range in favor of accuracy.

Here is a table of the IEEE floats and the same size posits, with es chosen to make the dynamic
range better for sizes 16 and 32 bits, and very nearly as large for 64, 128, and 256 bits. It may be
important  to  improve  the  dynamic  ranges  for  16-bit  and  32-bit  posits  if  they  are  to  be  used  as
replacements, say, for 32-bit and 64-bit floats, respectively.
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In the current (2008) version of the IEEE 754 standard, there are five binary float sizes: 16, 32, 64,
128, and 256 bits. For some users, it might be important that posits do as well or better than floats
for dynamic range, lest they appear to be sacrificing dynamic range in favor of accuracy.

Here is a table of the IEEE floats and the same size posits, with es chosen to make the dynamic
range better for sizes 16 and 32 bits, and very nearly as large for 64, 128, and 256 bits. It may be
important  to  improve  the  dynamic  ranges  for  16-bit  and  32-bit  posits  if  they  are  to  be  used  as
replacements, say, for 32-bit and 64-bit floats, respectively.

Size,
bits

Float
exponent size

Float
dynamic range

Posit
es value

Posit
dynamic range

16 5 3.×10-8 to 7.×104 1 9.×10-10 to 1.×109

32 8 7.×10-46 to 3.×1038 3 2.×10-75 to 5.×1074

64 11 2.×10-324 to 2.×10308 4 4.×10-304 to 3.×10303

128 15 3.×10-4966 to 1.×104932 7 3.×10-4894 to 3.×104893

256 19 1.×10-78984 to 2.×1078913 10 1.×10-78605 to 9.×1078604

These  exponent  sizes  for  floats  do  not  follow  any  mathematical  pattern,  but  reflect  intensely-
argued compromises  by  the  IEEE committee.  Trying  to  match  the  1985-era  choices  of  the  IEEE
committee results in an equally inexplicable set of es values for the posits. Frankly, the reason for
such enormous dynamic ranges is that they were trying to save transistors instead of provide what
users really  need.  Multiplying and dividing floats only requires integer addition and subtraction of
the exponent field, but the fraction field needs an integer multiplier, and the cost of that can grow
almost  as  the  square  of  the  number  of  fraction  bits.  So  while  almost  no  one  strays  outside  the
range  10-13  to  1013  in  real  applications,  the  IEEE  754  Standard  proudly  lets  you  go  from  about
10-78984  to  1078913.  Even  astrophysicists  don’t  know  what  to  do  with  dynamic  ranges  that  huge.
Ironically,  whatever  those  decision-makers  saved  in  the  size  of  the  integer  multiplier,  they  more
than made up for  it  with  a  long list  of  burdensome exception cases that  consume plenty  of  logic
(like negative zero, subnormal exceptions, NaN and infinity bit patterns, multiple rounding modes,
and the requirement of processor flags for overflow, underflow, and inexact results).

For  the  moment,  suppose  the  IEEE  choices  are  justified.  The  posit  method  of  expressing  the
power-of-two scaling factor frees up more bits for the fraction over a wide range, giving a greater
maximum accuracy for the above choices of es:
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Size,
bits

Float maximum
accuracy, bits

Posit maximum
accuracy, bits

Posit advantage,
bits

Range where
posit accuracy

is ≥ float accuracy

16 11 13 2
1

64
to 64

32 24 27 3 2.×10-10 to 4.×109

64 53 58 5 1.×10-29 to 8.×1028

128 113 119 6 2.×10-270 to 5.×10269

256 237 244 7 9×10-2467 to 1.1×102466

So  even  if  we  buy  into  the  transistor-pinching  choices  of  IEEE  754,  posits  easily  beat  floats  for
accuracy. 

What  if  we  take  a  more  reasoned  approach,  and  simply  increment  the  es  value  every  time  we
double the number of bits of precision? Every such increment results in a fourfold increase in the
dynamic  range,  which  certainly  should  be  ample.  For  purposes  of  comparison  with  8-bit  posits,
let's  imagine a  "quarter-precision"  IEEE float  with  3  exponent  bits  so  we can include that  size  in
the table.

Size,
bits

Float
exponent size

Float
dynamic range

Posit
es value

Posit
dynamic range

8 3 0.008 to 2.×101 0 0.008 to 1.×102

16 5 3.×10-8 to 7.×104 1 9.×10-10 to 1.×109

32 8 7.×10-46 to 3.×1038 2 5.×10-38 to 2.×1037

64 11 2.×10-324 to 2.×10308 3 2.×10-152 to 5.×10151

128 15 3.×10-4966 to 1.×104932 4 2.×10-612 to 5.×10611

256 19 1.×10-78984 to 2.×1078913 5 4.×10-2457 to 3.×102456

Here is  the posit  accuracy advantage if  we do not  try  to  match the oversized dynamic ranges of
IEEE and simply use 0-1-2-3-4-5 as the es sizes.

Posits4.nb     41



Size,
bits

Float maximum
accuracy, bits

Posit maximum
accuracy, bits

Posit advantage,
bits

Range where
posit accuracy

is ≥ float accuracy

8 5 6 1
1
4

to 4

16 11 13 2
1

64
to 64

32 24 28 4 1.×10-6 to 1.×106

64 53 59 6 1.×10-17 to 7.×1016

128 113 122 9 7.×10-49 to 1.×1048

256 237 249 12 6.×10-126 to 2.×10125

Somehow,  that  looks  a  lot  more  sane.  Notice  that  for  a  32-bit  posit,  the  four  extra  accuracy  bits
would make them comparable to an old-fashioned 36-bit float from the days before IBM introduced
its System 360 in the 1960s. It will take some time to get sufficient feedback from the HPC commu-
nity to decide this issue, but right now my vote is for the second set of es  settings. The es  value
should simply be

es = log2(nbits) - 3

7.3 Constructing the low-precision sets to compare

Let’s construct some eight-bit “quarter precision” floats that follow IEEE rules, and then an eight-bit
posit with a comparable dynamic range. We use such low precision to make it practical to find the
entire set of values and work with tables formed from pairs of them, which will have 65536 entries.
Here is what a quarter-precision IEEE-style float might look like (with a 4-bit exponent, instead of
the 3-bit exponent used in the tables in the previous section):

s

sign
bit

exponent
bits

e1 e2 e3 e4

fraction
bits

f1 f2 f3

Set the float environment to 8-bit values with 4-bit exponent fields:

setfloatenv[{8, 4}]

The floatfix function turns counting integers into two sets of integers that puts the floats repre-
sented by the bit strings into increasing order. 
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The floatfix function turns counting integers into two sets of integers that puts the floats repre-
sented by the bit strings into increasing order. 

floatfix[i_Integer] := Ifi < 2nfbits-1, 2nfbits - i - 1, i - 2nfbits-1

The float8  list is the set of floats represented by every possible bit pattern. Printing the list with
TableForm is a trick to make the fractions automatically  typeset with a smaller  font  size than the
integers.

float8 = Tablef2x[floatfix[f]], f, 0, 2nfbits - 1;
Table[TableForm[{float8〚i〛}], {i, 1, Length[float8]}]

 Indeterminate , Indeterminate , Indeterminate , Indeterminate ,

Indeterminate , Indeterminate , Indeterminate , -∞ , -240 , -224 , -208 ,
-192 , -176 , -160 , -144 , -128 , -120 , -112 , -104 , -96 , -88 , -80 ,
-72 , -64 , -60 , -56 , -52 , -48 , -44 , -40 , -36 , -32 , -30 , -28 , -26 ,
-24 , -22 , -20 , -18 , -16 , -15 , -14 , -13 , -12 , -11 , -10 , -9 , -8 ,

- 15

2
, -7 , - 13

2
, -6 , - 11

2
, -5 , - 9

2
, -4 , - 15

4
, - 7

2
, - 13

4
, -3 , - 11

4
, - 5

2
,

- 9

4
, -2 , - 15

8
, - 7

4
, - 13

8
, - 3

2
, - 11

8
, - 5

4
, - 9

8
, -1 , - 15

16
, - 7

8
, - 13

16
, - 3

4
,

- 11

16
, - 5

8
, - 9

16
, - 1

2
, - 15

32
, - 7

16
, - 13

32
, - 3

8
, - 11

32
, - 5

16
, - 9

32
, - 1

4
, - 15

64
,

- 7

32
, - 13

64
, - 3

16
, - 11

64
, - 5

32
, - 9

64
, - 1

8
, - 15

128
, - 7

64
, - 13

128
, - 3

32
, - 11

128
,

- 5

64
, - 9

128
, - 1

16
, - 15

256
, - 7

128
, - 13

256
, - 3

64
, - 11

256
, - 5

128
, - 9

256
, - 1

32
,

- 15

512
, - 7

256
, - 13

512
, - 3

128
, - 11

512
, - 5

256
, - 9

512
, - 1

64
, - 7

512
, - 3

256
, - 5

512
,

- 1

128
, - 3

512
, - 1

256
, - 1

512
, 0 , 0 , 1

512
, 1

256
, 3

512
, 1

128
,

5

512
, 3

256
,

7

512
,

1

64
, 9

512
,

5

256
, 11

512
, 3

128
, 13

512
,

7

256
, 15

512
, 1

32
, 9

256
,

5

128
, 11

256
, 3

64
, 13

256
,

7

128
, 15

256
, 1

16
, 9

128
,

5

64
, 11

128
, 3

32
, 13

128
,

7

64
, 15

128
, 1

8
, 9

64
,

5

32
, 11

64
, 3

16
,

13

64
,

7

32
, 15

64
, 1

4
, 9

32
,

5

16
, 11

32
, 3

8
, 13

32
,

7

16
, 15

32
, 1

2
, 9

16
,

5

8
, 11

16
, 3

4
,

13

16
,

7

8
, 15

16
, 1 , 9

8
,

5

4
, 11

8
, 3

2
, 13

8
,

7

4
, 15

8
, 2 , 9

4
,

5

2
, 11

4
, 3 , 13

4
,

7

2
, 15

4
, 4 , 9

2
, 5 , 11

2
, 6 , 13

2
, 7 , 15

2
, 8 , 9 , 10 , 11 , 12 , 13 , 14 ,

15 , 16 , 18 , 20 , 22 , 24 , 26 , 28 , 30 , 32 , 36 , 40 , 44 , 48 , 52 ,
56 , 60 , 64 , 72 , 80 , 88 , 96 , 104 , 112 , 120 , 128 , 144 , 160 , 176 ,
192 , 208 , 224 , 240 , ∞ , Indeterminate , Indeterminate , Indeterminate ,

Indeterminate , Indeterminate , Indeterminate , Indeterminate

That  set  has  256  elements  in  it,  but  14  of  the  elements  express  NaN  (Indeterminate).  Also,
notice  that  the  value  0  occurs  twice  in  the  above  set  because  of  “negative  zero.”  The  smallest
positive value for the floats is 1 /512 and the largest value is 240, giving them a dynamic range of
about five decades.

Now construct posits with nbits = 8. If we choose es = 1, notice the values of minpos and maxpos
exceed the dynamic range of the floats:
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setpositenv[{8, 1}]
{minpos, maxpos}


1

4096
, 4096

Again generate the table as if we had 2’s complement integers, from most negative to most posi-
tive.  The positfix  function makes an adjustment like that  made by floatfix,  to put  the posits
into increasing order.

positfix[i_Integer] := If[i < npat / 2, i + npat / 2, i - npat / 2]
posit8 = Table[p2x[positfix[j]], {j, 0, npat - 1}];
TableTableFormposit8〚i〛, {i, 1, npat}

 ComplexInfinity , -4096 , -1024 , -512 , -256 , -192 , -128 , -96 , -64 ,

-56 , -48 , -40 , -32 , -28 , -24 , -20 , -16 , -15 , -14 , -13 , -12 ,

-11 , -10 , -9 , -8 , - 15

2
, -7 , - 13

2
, -6 , - 11

2
, -5 , - 9

2
, -4 , - 31

8
,

- 15

4
, - 29

8
, - 7

2
, - 27

8
, - 13

4
, - 25

8
, -3 , - 23

8
, - 11

4
, - 21

8
, - 5

2
, - 19

8
, - 9

4
,

- 17

8
, -2 , - 31

16
, - 15

8
, - 29

16
, - 7

4
, - 27

16
, - 13

8
, - 25

16
, - 3

2
, - 23

16
, - 11

8
, - 21

16
,

- 5

4
, - 19

16
, - 9

8
, - 17

16
, -1 , - 31

32
, - 15

16
, - 29

32
, - 7

8
, - 27

32
, - 13

16
, - 25

32
, - 3

4
,

- 23

32
, - 11

16
, - 21

32
, - 5

8
, - 19

32
, - 9

16
, - 17

32
, - 1

2
, - 31

64
, - 15

32
, - 29

64
, - 7

16
, - 27

64
,

- 13

32
, - 25

64
, - 3

8
, - 23

64
, - 11

32
, - 21

64
, - 5

16
, - 19

64
, - 9

32
, - 17

64
, - 1

4
, - 15

64
, - 7

32
,

- 13

64
, - 3

16
, - 11

64
, - 5

32
, - 9

64
, - 1

8
, - 15

128
, - 7

64
, - 13

128
, - 3

32
, - 11

128
, - 5

64
,

- 9

128
, - 1

16
, - 7

128
, - 3

64
, - 5

128
, - 1

32
, - 7

256
, - 3

128
, - 5

256
, - 1

64
, - 3

256
,

- 1

128
, - 3

512
, - 1

256
, - 1

512
, - 1

1024
, - 1

4096
, 0 , 1

4096
, 1

1024
, 1

512
, 1

256
, 3

512
,

1

128
, 3

256
, 1

64
,

5

256
, 3

128
,

7

256
, 1

32
,

5

128
, 3

64
,

7

128
, 1

16
, 9

128
,

5

64
, 11

128
,

3

32
, 13

128
,

7

64
, 15

128
, 1

8
, 9

64
,

5

32
, 11

64
, 3

16
, 13

64
,

7

32
, 15

64
, 1

4
, 17

64
, 9

32
,

19

64
,

5

16
, 21

64
, 11

32
, 23

64
, 3

8
, 25

64
, 13

32
, 27

64
,

7

16
, 29

64
, 15

32
, 31

64
, 1

2
, 17

32
, 9

16
,

19

32
,

5

8
, 21

32
, 11

16
, 23

32
, 3

4
, 25

32
, 13

16
, 27

32
,

7

8
, 29

32
, 15

16
, 31

32
, 1 , 17

16
, 9

8
,

19

16
,

5

4
, 21

16
, 11

8
, 23

16
, 3

2
, 25

16
, 13

8
, 27

16
,

7

4
, 29

16
, 15

8
, 31

16
, 2 , 17

8
, 9

4
,

19

8
,

5

2
, 21

8
, 11

4
, 23

8
, 3 , 25

8
, 13

4
, 27

8
,

7

2
, 29

8
, 15

4
, 31

8
, 4 , 9

2
, 5 ,

11

2
, 6 , 13

2
, 7 , 15

2
, 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 20 , 24 ,

28 , 32 , 40 , 48 , 56 , 64 , 96 , 128 , 192 , 256 , 512 , 1024 , 4096

For  posits,  there are no  wasted cases.  All  bit  patterns represent  unique mathematical  quantities.
This  relates  to  another  violation  of  mathematics  committed  by  IEEE  floats.  If  a = b,  then  for  any
function  f  we  expect  f (a) = f (b).  But  the  IEEE  rules  send  us  down  the  rabbit  hole  by  declaring
positive and negative zero to  be numerically  equal,  yet  1 /x  is  –∞  for  “negative zero”  and +∞  for
“positive zero.” Which implies that negative infinity is the same as positive infinity. Gulp.

For posits, there are no wasted cases. 
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7.4 A careful definition of “decimal accuracy”

Like so many things in numerical analysis, we have gotten accustomed to some concepts that are
widely  accepted  but  rather  sloppy  in  their  logic.  The  way  we measure  “error”  of  various  types  is
such a concept. For instance, this is a widely-accepted definition:

absolute error = xcomputed - xexact

That seems reasonable at first glance; if the values are identical, their difference is zero and there
is no error. But if a calculation produces 315 instead of 314, doesn’t the error look very similar to
returning 3.15 instead of 3.14? A number system designed for real numbers usually spans many
decades  of  dynamic  range,  but  simply  subtracting  numbers  looks  more  like  an  integer  or  fixed-
point way of looking at inaccuracy.

In an attempt to repair this contradiction, the relative error of a computed value is usually defined
as

relative error =
xcomputed - xexact

xexact

Here are a couple reasons you should be dissatisfied with this definition. For one, if you compute
–1 when the correct  answer  is  100,  then the relative  error  would  only  be 1.01.  If  you don’t  even
know which half of the projective real circle a result is on, then you know essentially nothing about
the answer since the sign is the most significant part of a number. An error formula should refuse
to function in such cases. Even declaring the relative error to be infinite is too flattering.

For  another,  the  formula  is  quite  different  for  numbers  and  their  inverses.  Suppose
xcomputed = 0.001 but xexact = 0.0001. Then the relative error is 9. But if we were instead computing
the reciprocals of the numbers, the relative error would take xcomputed = 1000 and xexact = 10000 as
inputs,  and  the  above  formula  would  reassure  us  that  the  relative  error  is  only  0.9.  It  makes  no
sense that  an answer can be made to look more accurate simply by taking the reciprocal.  If  you
knew the miles per gallon of a car with a relative error of 0.1, would it not bother you that you know
the gallons per mile of the same car with a relative error of 0.2? That’s why it is more common to
say something is  accurate to some percentage,  like “within five percent”  which is  certainly  better
because it invokes ratios instead of differences.

Engineers have long had a solution when comparing numbers with ratios, which is to use decibels.
A  ratio  of  10  is  10  decibels  (dB).  A  ratio  of  1  dB  means  the  ratio  is  101/10 = 1.2589⋯.  As  with
decibels,  we  should  be  looking  at  the  difference  of  the  logarithms  of  the  numbers,  which  is  the
same as the logarithm of their ratio:

decimal error ≡ log10 xcomputed - log10 (xexact) = log10

xcomputed

xexact
.

Notice that  the absolute value makes xcomputed  and xexact  interchangeable in  the above definition.
Also  notice  that  it  produces  the  same  result  whether  you  use  xcomputed  and  xexact  as  inputs,  or
1xcomputed and 1 /xexact. So that looks like a mathematically sound definition.

We  could  achieve  those  properties  with  any  base  logarithm,  but  we  choose  base  10  because  it
measures the error in decades, the same human-friendly way we measure dynamic range. Recall
the above example of xcomputed = 0.001 but xexact = 0.0001; the decimal error is 1. That means it’s a
decade off.

The decimal error can be used to define decimal accuracy. Accuracy is the inverse of error. If we
want to know the number of decimals of accuracy, we again take the log base 10.
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Notice that  the absolute value makes xcomputed  and xexact  interchangeable in  the above definition.
Also  notice  that  it  produces  the  same  result  whether  you  use  xcomputed  and  xexact  as  inputs,  or
1xcomputed and 1 /xexact. So that looks like a mathematically sound definition.

We  could  achieve  those  properties  with  any  base  logarithm,  but  we  choose  base  10  because  it
measures the error in decades, the same human-friendly way we measure dynamic range. Recall
the above example of xcomputed = 0.001 but xexact = 0.0001; the decimal error is 1. That means it’s a
decade off.

The decimal error can be used to define decimal accuracy. Accuracy is the inverse of error. If we
want to know the number of decimals of accuracy, we again take the log base 10.

decimal accuracy ≡ log10
1

decimal error
= -log10 log10

xcomputed

xexact
.

Here  is  the  Mathematica  function,  which  uses  the  above  formula  but  also  handles  exceptional
input values. If either input is NaN, then the accuracy is NaN. It also produces NaN if the numbers
are  of  opposite  sign.  Otherwise,  if  the  input  values  are  identical,  the  accuracy  is  ∞.  If  only  one
input is ∞ or only one input is 0, the accuracy is –∞, because on a logarithmic scale, both 0 and ∞
are infinitely  far  away from any nonzero real  number.  This is why it  is  a disaster to “round” large
results to infinity (overflow) or small results to zero (underflow).

decacc[x_, y_] := Which[
x === Indeterminate y === Indeterminate, Indeterminate,
x === y, ∞,
x === ComplexInfinity y === ComplexInfinity, Indeterminate,
(x < 0 y > 0) (x > 0 y < 0), Indeterminate,
True, N[-Log[10, Abs[Log[10, x / y]]]]]

If the numbers are a decade apart, the accuracy is zero; we don’t even know the order of magni-
tude of the result:

decacc[23, 230]

0.

Engineers should like this property of the definition: Here is the decimal accuracy if  an answer is
off by 1 dB:

decacc1, 101/10

1.

If an answer is off by 0.1 dB, then we have 2 decimals of accuracy; off by 0.01 dB means 3 deci-
mals of accuracy, and so on.

We can also analyze the accuracy of a number system. Let’s just study three consecutive values
in the float8 set: {15/16, 1, 9/8}. We know that

Values in [15 /16, 31 /32) round to 15 /16.

Values in [31/32,17/16] round to 1.

Values in (17/16,9/8] round to 9/8.

If we happen to have a value that is exactly 15/16, 1, or 9/8, then the decimal accuracy is infinite.
In between those values, decimal accuracy dips to a minimum.
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If an answer is off by 0.1 dB, then we have 2 decimals of accuracy; off by 0.01 dB means 3 deci-
mals of accuracy, and so on.

We can also analyze the accuracy of a number system. Let’s just study three consecutive values
in the float8 set: {15/16, 1, 9/8}. We know that

Values in [15 /16, 31 /32) round to 15 /16.

Values in [31/32,17/16] round to 1.

Values in (17/16,9/8] round to 9/8.

If we happen to have a value that is exactly 15/16, 1, or 9/8, then the decimal accuracy is infinite.
In between those values, decimal accuracy dips to a minimum.

0.95 1.00 1.05 1.10
Real value x

1

2

3

4

Decimal accuracy
after rounding x

Notice  the  slight  discontinuity  at  the  two  minima;  that’s  because  of  the  difference  between  the
geometric  mean and the arithmetic  mean.  The cusps are at  the halfway points,  15/16+1

2
= 0.96875

and 1+9/8
2

= 1.0625, but those are not the places where the decimal error, defined as a logarithmic

distance,  is  minimized.  That  point  would  happen  at  (15 /16)×1 = 0.96824⋯  and

1×(9 /8) = 1.0606⋯,  which  at  this  extremely  low  precision  is  a  large  enough  discontinuity  to
see  in  the  graph,  barely.  In  16-bit  precision  or  greater,  you  really  wouldn’t  be  able  to  see  it.  If  it
weren’t so computationally expensive, it would be a tiny bit better if all rounding were done accord-
ing to which side of the geometric mean a result falls, not the arithmetic mean.

Notice, though, that posits do round using the geometric mean, if the rounded bits are exponent
bits. That only happens at the extremes of the range, but it helps increase decimal accuracy. For
instance,  in  the  8-bit  posit  set  under  examination  here,  the  three  largest  positive  reals  are  512,
1024, and 4096. Here is what posit decimal accuracy looks like for x in that range: 
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The geometric mean of 512 and 1024 is 724.077⋯ but normal linear rounding of the fraction part
uses  the  midpoint,  768,  as  the  switchover  point,  creating  a  subtle  but  visible  discontinuity.  The
geometric mean between 1024 and 4096, on the other hand, is exactly 2048 and that is also what
posits use for the switchover point. Here is a decimal accuracy plot for the positive posits:

-10 -5 0 5 10
Log2(x)

0.5

1.0

1.5

2.0

2.5

3.0
Decimal Accuracy for {8,1} Posits

The  tapered  precision  is  very  clear.  Worst-case  precision  is  highest  where  the  most  common
numbers are, in the center of the range of possible exponents. Here is the equivalent plot for the 8-
bit floats we are testing here:
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The dynamic range is visibly smaller than for posits, and accuracy is tapered only on the left where
the denormalized float exceptions happen.

Those graphs are thorough in showing the accuracy of the entire number system over the dynamic
range, but the vertical spikes at the exact points make it difficult to compare the two systems. Let’s
instead be pessimistic and look at the worst case decimal accuracy  for each point in the number
set. The following graph shows just the bottom of each trough, allowing us to show both posits and
floats on the same plot:

At  higher  precisions,  the  jaggedness  is  less  pronounced,  and  the  posit  decimal  accuracy  is  a
symmetrical  triangular outline that peaks in the center;  the float pattern always forms a rectangle
with a ramp on the left for the denormalized floats. The posits have higher accuracy than floats in
the center, and less near the underflow and overflow regions. The larger the es value, the broader
the triangle that describes posit  accuracy, and at some point  it  becomes so broad that the entire
accuracy curve has less accuracy than the floats.

For  the  8-bit  posits  and  floats,  posits  have  superior  accuracy  for  numbers  with  absolute  value
between 1/4 and 4, and equal or superior accuracy for numbers with absolute value between 1/16
and 16.
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7.5 The Morris Floats

We  now  have  enough  mathematical  machinery  to  show  what  happened  to  the  1971  tapered
precision  scheme.  Almost  half  a  century  ago,  Robert  Morris  proposed  it  in  his  paper,  “Tapered
Floating Point: A New Floating-Point Representation.” It is worth studying his proposal and compar-
ing it with posit arithmetic using the tools presented so far, particularly since those familiar with the
literature on alternatives to floats  remember that  there were attempts to create tapered precision
early on. We know that the Morris approach never caught on or influenced the IEEE 754 Standard
committee. Perhaps we can figure out why it didn’t.

Morris suggests an additional field, the G field, that describes how many bits are in the exponent.
The bits in the G field represent an integer to which we add an offset, so two G bits could repre-
sent,  say,  an exponent of  size 1,  2,  3,  or  4.  Or it  could represent  3,  4,  5,  or  6.  He describes the
need for

◼ The G field for the number of exponent bits
◼ The sign bit of the exponent
◼ The E field for the exponent bits
◼ The sign bit of the fraction
◼ The  F  field  for  the  remaining  bits,  a  fraction  field  where  the  hidden  bit  is  always  1  (no

subnormals).

The  claim  in  the  1971  paper  is  that  this  allows  more  accuracy  bits  (fraction  bits)  for  values  with
small  exponents,  yet  more dynamic range than a system that  only has a signed exponent  and a
signed fraction.  That  sounds familiar!  The author notes that  there can be multiple ways to repre-
sent  a  particular  value with  this  system (redundant  bit  patterns)  and he proposes the convention
that the representation with the smallest value stored in G is the one to use; the other bit patterns
become meaningless under the system. 

A Morris float looks like the following, with five sub-fields:

e±

sign
G bits

g1 g2 ⋯ggs

exponent

e1 e2 ⋯ eG f ±

sign
fraction

f1 f2 ⋯ fk

n

Notice that  we only  show black dividing lines between the G  bits  and the exponent  sign bit,  and
between the exponent  sign bit  and the exponent  bits.  That’s  to remind us that  the other  partition
locations vary according to the contents of G. 

We are using nfbit for the number of bits in a standard float, so let’s use nmbit for the number in a
Morris float. We can use gs  as the size of the G  field, and define a Morris float environment with
setmorrisenv:
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setmorrisenv[{n_Integer /; n ≥ 4, gsize_Integer /; gsize ≥ 1}] :=

{nmbit, gs} = {n, gsize};

minmorris = 2-22gs-1;

maxmorris = 222gs-1 1 +
2n-2gs-gs-2 - 1

2n-2gs-gs-2
;

For example, set an environment for 8 bits per number and 1 gs bit:

setmorrisenv[{8, 1}]
{nmbit, gs, minmorris, maxmorris}

8, 1,
1

8
, 15

There’s  an  early  warning  about  this  scheme.  The  dynamic  range  is  awfully  small.  In  fact,  the
dynamic range would  have been larger  if  we had used the 8 bits  to  represent  unsigned integers
from -128 to 127.

Now  we  need  the  equivalent  of  f2x,  which  we  can  call  m2x,  that  follows  the  rules  specified  by
Morris.

m2xm_Integer /; 0 ≤ m < 2nmbit :=
Module{emask, esgn, exp, fmask, frac, fsgn, fs, g},
g = BitShiftRight[m, nmbit - gs];
esgn = BitAnd[1, BitShiftRight[m, nmbit - gs - 1]];
emask = FromDigits[Table[1, g + 1], 2];
fs = nmbit - gs - g - 3;
fsgn = BitAnd[1, BitShiftRight[m, fs]];
exp = BitAnd[BitShiftRight[m, fs + 1], emask];
frac = BitAnd[FromDigits[Table[1, fs], 2], m];
Ifm ⩵ 0, 0, (-1)fsgn × 2(-1)esgn×exp

× 1 + frac  2fs

Apologies  to  the  reader  for  what  follows,  but  it  is  important  to  see  the  kind  of  chaos  that  results
from simply adding a field that describes the exponent size:
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morris8 = Tablem2x[i], i, 0, 2nmbit - 1

0,
17

16
,
9

8
,
19

16
,
5

4
,
21

16
,
11

8
,
23

16
,
3

2
,
25

16
,
13

8
,
27

16
,
7

4
,
29

16
,
15

8
,
31

16
, -1, -

17

16
,

-
9

8
, -

19

16
, -

5

4
, -

21

16
, -

11

8
, -

23

16
, -

3

2
, -

25

16
, -

13

8
, -

27

16
, -

7

4
, -

29

16
, -

15

8
,

-
31

16
, 2,

17

8
,
9

4
,
19

8
,
5

2
,
21

8
,
11

4
,
23

8
, 3,

25

8
,
13

4
,
27

8
,
7

2
,
29

8
,
15

4
,
31

8
, -2,

-
17

8
, -

9

4
, -

19

8
, -

5

2
, -

21

8
, -

11

4
, -

23

8
, -3, -

25

8
, -

13

4
, -

27

8
, -

7

2
, -

29

8
, -

15

4
,

-
31

8
, 1,

17

16
,
9

8
,
19

16
,
5

4
,
21

16
,
11

8
,
23

16
,
3

2
,
25

16
,
13

8
,
27

16
,
7

4
,
29

16
,
15

8
,
31

16
,

-1, -
17

16
, -

9

8
, -

19

16
, -

5

4
, -

21

16
, -

11

8
, -

23

16
, -

3

2
, -

25

16
, -

13

8
, -

27

16
, -

7

4
, -

29

16
,

-
15

8
, -

31

16
,
1

2
,
17

32
,

9

16
,
19

32
,
5

8
,
21

32
,
11

16
,
23

32
,
3

4
,
25

32
,
13

16
,
27

32
,
7

8
,
29

32
,
15

16
,

31

32
, -

1

2
, -

17

32
, -

9

16
, -

19

32
, -

5

8
, -

21

32
, -

11

16
, -

23

32
, -

3

4
, -

25

32
, -

13

16
, -

27

32
, -

7

8
,

-
29

32
, -

15

16
, -

31

32
, 1,

9

8
,
5

4
,
11

8
,
3

2
,
13

8
,
7

4
,
15

8
, -1, -

9

8
, -

5

4
, -

11

8
, -

3

2
, -

13

8
,

-
7

4
, -

15

8
, 2,

9

4
,
5

2
,
11

4
, 3,

13

4
,
7

2
,
15

4
, -2, -

9

4
, -

5

2
, -

11

4
, -3, -

13

4
, -

7

2
,

-
15

4
, 4,

9

2
, 5,

11

2
, 6,

13

2
, 7,

15

2
, -4, -

9

2
, -5, -

11

2
, -6, -

13

2
, -7, -

15

2
, 8,

9, 10, 11, 12, 13, 14, 15, -8, -9, -10, -11, -12, -13, -14, -15, 1,
9

8
,
5

4
,

11

8
,
3

2
,
13

8
,
7

4
,
15

8
, -1, -

9

8
, -

5

4
, -

11

8
, -

3

2
, -

13

8
, -

7

4
, -

15

8
,
1

2
,

9

16
,
5

8
,

11

16
,
3

4
,
13

16
,
7

8
,
15

16
, -

1

2
, -

9

16
, -

5

8
, -

11

16
, -

3

4
, -

13

16
, -

7

8
, -

15

16
,
1

4
,

9

32
,

5

16
,

11

32
,
3

8
,
13

32
,

7

16
,
15

32
, -

1

4
, -

9

32
, -

5

16
, -

11

32
, -

3

8
, -

13

32
, -

7

16
, -

15

32
,
1

8
,

9

64
,

5

32
,
11

64
,

3

16
,
13

64
,

7

32
,
15

64
, -

1

8
, -

9

64
, -

5

32
, -

11

64
, -

3

16
, -

13

64
, -

7

32
, -

15

64


A discrete plot of the values represented by ordered bit strings gives us the second clue about the
shortcomings of the Morris proposal:
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ListPlot[morris8, PlotStyle → ]

50 100 150 200 250

-5

5

What a crazy ordering this format produces! But here is the crucial failure of the Morris approach
to tapered precision. Sort the values and get rid of the many redundant representations:

morris8s = Union[morris8]

-15, -14, -13, -12, -11, -10, -9, -8, -
15

2
, -7, -

13

2
, -6, -

11

2
, -5, -

9

2
, -4,

-
31

8
, -

15

4
, -

29

8
, -

7

2
, -

27

8
, -

13

4
, -

25

8
, -3, -

23

8
, -

11

4
, -

21

8
, -

5

2
, -

19

8
, -

9

4
,

-
17

8
, -2, -

31

16
, -

15

8
, -

29

16
, -

7

4
, -

27

16
, -

13

8
, -

25

16
, -

3

2
, -

23

16
, -

11

8
, -

21

16
, -

5

4
,

-
19

16
, -

9

8
, -

17

16
, -1, -

31

32
, -

15

16
, -

29

32
, -

7

8
, -

27

32
, -

13

16
, -

25

32
, -

3

4
, -

23

32
, -

11

16
,

-
21

32
, -

5

8
, -

19

32
, -

9

16
, -

17

32
, -

1

2
, -

15

32
, -

7

16
, -

13

32
, -

3

8
, -

11

32
, -

5

16
, -

9

32
, -

1

4
,

-
15

64
, -

7

32
, -

13

64
, -

3

16
, -

11

64
, -

5

32
, -

9

64
, -

1

8
, 0,

1

8
,

9

64
,

5

32
,
11

64
,

3

16
,
13

64
,

7

32
,
15

64
,
1

4
,

9

32
,

5

16
,
11

32
,
3

8
,
13

32
,

7

16
,
15

32
,
1

2
,
17

32
,

9

16
,
19

32
,
5

8
,
21

32
,
11

16
,
23

32
,

3

4
,
25

32
,
13

16
,
27

32
,
7

8
,
29

32
,
15

16
,
31

32
, 1,

17

16
,
9

8
,
19

16
,
5

4
,
21

16
,
11

8
,
23

16
,
3

2
,
25

16
,

13

8
,
27

16
,
7

4
,
29

16
,
15

8
,
31

16
, 2,

17

8
,
9

4
,
19

8
,
5

2
,
21

8
,
11

4
,
23

8
, 3,

25

8
,
13

4
,
27

8
,

7

2
,
29

8
,
15

4
,
31

8
, 4,

9

2
, 5,

11

2
, 6,

13

2
, 7,

15

2
, 8, 9, 10, 11, 12, 13, 14, 15

Eight  bits  can  produce  28 = 256  distinct  bit  patterns.  How  many  mathematical  values  are  in  the
above list?
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Length[morris8s]

161

There  should  be  256  distinct  values…  but  we  only  have  161.  The  Morris  system  is  littered  with
redundant ways to express the same value, wasting over one-third of the bit patterns.

With that  as the number system, we can plot  the decimal  accuracy alongside that  for  posits  and
conventional floats:

At their best, Morris floats match posit accuracy, but have a much smaller dynamic range. Let’s at
least show that by allowing two bits in G  instead of one, Morris floats can  have a larger dynamic
range (at the expense of very low accuracy everywhere):

setmorrisenv[{8, 2}]
{nmbit, gs, minmorris, maxmorris}

8, 2,
1

32768
, 32768

Here is the set that results, after removing all the redundancies:
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morris8s = UnionTablem2x[i], i, 0, 2nmbit - 1

-32768, -16384, -8192, -4096, -2048, -1024, -512, -256, -192, -128, -96,

-64, -48, -32, -24, -16, -14, -12, -10, -8, -7, -6, -5, -4, -
15

4
, -

7

2
,

-
13

4
, -3, -

11

4
, -

5

2
, -

9

4
, -2, -

15

8
, -

7

4
, -

13

8
, -

3

2
, -

11

8
, -

5

4
, -

9

8
, -1, -

15

16
,

-
7

8
, -

13

16
, -

3

4
, -

11

16
, -

5

8
, -

9

16
, -

1

2
, -

7

16
, -

3

8
, -

5

16
, -

1

4
, -

7

32
, -

3

16
, -

5

32
,

-
1

8
, -

3

32
, -

1

16
, -

3

64
, -

1

32
, -

3

128
, -

1

64
, -

3

256
, -

1

128
, -

1

256
, -

1

512
, -

1

1024
,

-
1

2048
, -

1

4096
, -

1

8192
, -

1

16384
, -

1

32768
, 0,

1

32768
,

1

16384
,

1

8192
,

1

4096
,

1

2048
,

1

1024
,

1

512
,

1

256
,

1

128
,

3

256
,

1

64
,

3

128
,

1

32
,

3

64
,

1

16
,

3

32
,
1

8
,

5

32
,

3

16
,

7

32
,
1

4
,

5

16
,
3

8
,

7

16
,
1

2
,

9

16
,
5

8
,
11

16
,
3

4
,
13

16
,
7

8
,
15

16
, 1,

9

8
,
5

4
,
11

8
,
3

2
,

13

8
,
7

4
,
15

8
, 2,

9

4
,
5

2
,
11

4
, 3,

13

4
,
7

2
,
15

4
, 4, 5, 6, 7, 8, 10, 12, 14, 16, 24,

32, 48, 64, 96, 128, 192, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768

Now there is even more waste of bit patterns, since there are only 145 distinct values.

At least the dynamic range now goes from 2-15 to 215. But the accuracy is worse than floats for the
full range where floats are defined, except for a small interval for magnitudes between 1/2 and 4,
where  it  manages  to  eke  out  the  same  accuracy.  Hmm…  what  would  happen  if  we  also  gave
posits another bit for dynamic range?
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setpositenv[{8, 2}]
posit8 = Table[p2x[positfix[j]], {j, 0, npat - 1}]

ComplexInfinity, -16777216, -1048576, -262144, -65536, -32768, -16384,

-8192, -4096, -3072, -2048, -1536, -1024, -768, -512, -384, -256, -224,
-192, -160, -128, -112, -96, -80, -64, -56, -48, -40, -32, -28, -24, -20,

-16, -15, -14, -13, -12, -11, -10, -9, -8, -
15

2
, -7, -

13

2
, -6, -

11

2
, -5, -

9

2
,

-4, -
15

4
, -

7

2
, -

13

4
, -3, -

11

4
, -

5

2
, -

9

4
, -2, -

15

8
, -

7

4
, -

13

8
, -

3

2
, -

11

8
, -

5

4
, -

9

8
,

-1, -
15

16
, -

7

8
, -

13

16
, -

3

4
, -

11

16
, -

5

8
, -

9

16
, -

1

2
, -

15

32
, -

7

16
, -

13

32
, -

3

8
, -

11

32
, -

5

16
,

-
9

32
, -

1

4
, -

15

64
, -

7

32
, -

13

64
, -

3

16
, -

11

64
, -

5

32
, -

9

64
, -

1

8
, -

15

128
, -

7

64
, -

13

128
,

-
3

32
, -

11

128
, -

5

64
, -

9

128
, -

1

16
, -

7

128
, -

3

64
, -

5

128
, -

1

32
, -

7

256
, -

3

128
, -

5

256
,

-
1

64
, -

7

512
, -

3

256
, -

5

512
, -
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Again, here are all three number systems on the same graph.
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That’s  a  massive  dynamic  range  from  a  byte-sized  number!  Posits  match  or  outperform  Morris
floats  everywhere.   Posits  also  have  the  same  accuracy  as  IEEE  floats  except  for  the  regions
close to where they overflow or underflow.

This  shows the value of  designing a number  system to  make the best  possible  use of  every bit
pattern.  Trying proposed systems out  with  low precision is  a  quick  way to  expose shortcomings
that may be masked when using 32-bit or 64-bit representation.

That was fun, but for the upcoming sections, we need to go back to an {8, 1} posit environment for
comparison with the 8-bit floats:

setpositenv[{8, 1}]
posit8 = Table[p2x[positfix[j]], {j, 0, npat - 1}];

7.6 Comparing floats with posits performing unary operations

7.6.1 Reciprocation
We  can  compare  the  reciprocal  closure,  that  is,  the  percentage  of  cases  where  1 /x  is  exactly
representable as a member of the set. Compare the percentage of the entire set of floats or posits
for which a reciprocal is exact, finite but inexact, produces a NaN, overflows, or underflows:

13.3% exact 18.8% exact

80.5% inexact 81.3% inexact

5.47% NaN

0.781% overflow

Floats Posits

Only  34  of  the  float  values  have exact  reciprocals.  In  contrast,  48  of  the  256 unum values  have
exact reciprocals, and never experience catastrophic loss of accuracy through overflow. The IEEE
float  definition  is  a  “kludge”  in  that  it  has  subnormal  numbers  at  the  low  end  (the  reciprocals  of
which incorrectly overflow to infinity), but replaces the high end numbers with NaN values. 

The  following  graph  makes  it  much  easier  to  visualize  the  relative  performance  of  floats  and
posits.  The  entire  set  of  decimal  losses  in  computing  1 /x  is  sorted  from smallest  to  largest,  and
plotted.
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Only  34  of  the  float  values  have exact  reciprocals.  In  contrast,  48  of  the  256 unum values  have
exact reciprocals, and never experience catastrophic loss of accuracy through overflow. The IEEE
float  definition  is  a  “kludge”  in  that  it  has  subnormal  numbers  at  the  low  end  (the  reciprocals  of
which incorrectly overflow to infinity), but replaces the high end numbers with NaN values. 

The  following  graph  makes  it  much  easier  to  visualize  the  relative  performance  of  floats  and
posits.  The  entire  set  of  decimal  losses  in  computing  1 /x  is  sorted  from smallest  to  largest,  and
plotted.
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The graph of posit decimal losses grows more slowly than that for floats, and never goes to infinity.

7.6.2 Square Roots

We can also compare square root closure,  that is, the percentage of cases where x  is exactly
representable as a member of the set. The sqrtbarchart routine also finds out the fraction of the
time  a  square  root  is  exact,  finite  but  inexact,  or  produces  a  NaN.  The  square  root  operation
cannot overflow or underflow. Negative inputs produce NaN results, but since the posit “±∞” really
means unsigned infinity, the square root of ±∞ is ±∞ and thus is closed for that input.

7.03% exact 8.20% exact

40.6% inexact 42.2% inexact

52.3% NaN 49.6% NaN

Floats Posits

Posits  do  better,  but  at  first  glance  it  looks  like  the  advantage  is  slight.  The  bar  chart  does  not
reveal  just  how  much  more  inexact  the  floats  are.  The  difference  in  the  sorted  losses  is  more
dramatic than it was for computing 1 /x. Here are the sorted losses for every x  value that is not
a NaN:
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The posit errors are about half those of the floats (for the results that are not indeterminate).

7.6.3 Square

Another  common  unary  operation  is  x2.  Overflow  and  underflow  are  a  common  disaster  when
squaring  floats.  Posits  experience  their  largest  decimal  loss  for  squares  that  would  overflow  or
underflow by IEEE rounding rules, but at least the loss is a few decimals and not infinite.

13.3% exact 15.6% exact

43.8% inexact 84.4% inexact

5.47% NaN

25.0% overflow

12.5% underflow

Floats Posits

Posits do much better, mainly by not having any exception cases at all. 
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Every  posit  can  be  squared.  (The  square  of  unsigned  infinity  is  again  unsigned  infinity.)  In  con-
trast, almost half the squarings of floats result in complete loss of information about the result.

7.6.4 Logarithm (base 2)
We can also compare the logarithm base 2 closure, that is, the percentage of cases where log2(x)
is  exactly  representable  as  a  member  of  the  set.  As  with  square  roots,  about  half  the  values
produce a NaN since the logarithm of a negative value is a complex number. Note: we allow posits
to  return  ±∞  as  the  logarithm  of  zero  and  the  logarithm  of  ±∞.  Remember,  posit  infinity  is
unsigned, like zero.

7.81% exact 9.77% exact

39.8% inexact 40.6% inexact

52.3% NaN 49.6% NaN

Floats Posits

Posits  do  better,  and  again  at  first  glance  it  looks  like  the  advantage  is  slight.  There  are  more
integer powers of 2 in the posit environment, for which the logarithm base 2 is expressible exactly.
Here are the sorted losses for every value that is not a NaN or infinity:
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The posit errors are again about half those of the floats.

7.6.5 Exponential (base 2)
Maybe one more: 2x. If you can do log2(x), it just takes a scale factor to get to ln(x) or log10(x) or
any other logarithm base. Similarly, once you can do 2x, it is easy to derive a scale factor that also
gets you ⅇx or 10x and so on.

7.81% exact 8.98% exact
56.3% inexact 90.6% inexact

5.47% NaN 0.391% NaN
15.6% overflow

14.8% underflow

Floats Posits

Posits have one exception case: the result is NaN when the argument is ±∞. We can only use ±∞
as  a  legitimate  answer  if  the  result  consists  entirely  of  infinite  values,  but  2-∞  is  zero,  so  2±∞  is
indeterminate.

The  maximum  decimal  loss  for  posits  is  very  large,  because  2maxpos  will  be  rounded  back  to
maxpos.  For  this  example  set,  just  a  few errors  are  as  high  as  log1024096 ≈ 1233 decimals.  So,
which  is  worse:  the  loss  of  over  a  thousand  decimals,  or  the  loss  of  an  infinite  number  of  deci-
mals? Well, if you can stay away from those (rare) very largest values, it’s still a win, because the
error for smaller values is much better behaved for posits.  Think of it  this way: the only time you
get  a  large decimal  loss  with  the  posits  is  when working  with  numbers  far  outside  of  what  floats
can even express as input arguments.
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Posits have one exception case: the result is NaN when the argument is ±∞. We can only use ±∞
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For common unary operations 1 /x, x , x2, log2(x), and 2x, posits are consistently and uniformly
more  accurate  than  floats  with  the  same number  of  bits,  and  produce  meaningful  results  over  a
larger dynamic range. The advantage of posits becomes greater with larger precision. If we were
to show the graphs for the unary operations comparing 32-bit floats with 32-bit posits, they would
be hard to read because the posit errors would hug the x-axis of the plot when graphed at a scale
large enough to show the float errors!

We now turn  our  attention  to  the four  elementary  arithmetic  operations that  take two arguments:
Addition, subtraction, multiplication, and division.

7.7 Two-argument operations

Now  we  start  to  examine  the  four  conventional  arithmetic  operations  +  –  ×  ÷  that  take  two
operands. To help visualize 65536 results, we can make 256 by 256 “closure plots” that show at a
glance what fraction of the results are exact, inexact, overflow, underflow, or NaN.

7.7.1 Comparing addition (or subtraction) 
Because x - y = x + (-y) works perfectly in both floats and posits, there is no need to study subtrac-
tion separately.  For the addition operation, we compute z = x + y  exactly,  and compare it  with the
sum that  is  returned by the rules of  each number  system. It  can happen that  the result  is  exact,
that it must be rounded to a nearby finite nonzero number, that it can overflow or underflow, or can
be an indeterminate form like ∞-∞ that produces a NaN. Each of these is color-coded so we can
look at  the entire addition table at  a glance. In the case of  rounded results,  the color-coding is  a
gradient from black (exact) to magenta (maximum error of either posits or floats). Here’s what the
closure plots look like for the floats and the unums. First, the floats:
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Addition Closure =Exact, =Inexact, =Overflow, =NaN

–maxreal zero maxreal–m
ax

re
al

ze
ro

m
ax

re
al

Addition Closure
18.533% exact
70.068% inexact
10.641% NaN

0.757% overflow

Because of all the NaN representations in the inputs, the float table will always be framed with the
NaN results, shown in yellow. If you look carefully in the upper left and lower right corner, you see
additional NaN results for adding ∞ to –∞, and –∞ to ∞.

Sums of large positive or large negative values overflow to ∞ or –∞, but underflow does not occur
for the addition operator.The error fades from magenta to black where the inputs are very different
magnitude, because the loss of decimal accuracy is very small in such cases.

Here is the closure plot for posits, and its summary table:
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Because of all the NaN representations in the inputs, the float table will always be framed with the
NaN results, shown in yellow. If you look carefully in the upper left and lower right corner, you see
additional NaN results for adding ∞ to –∞, and –∞ to ∞.

Sums of large positive or large negative values overflow to ∞ or –∞, but underflow does not occur
for the addition operator.The error fades from magenta to black where the inputs are very different
magnitude, because the loss of decimal accuracy is very small in such cases.

Here is the closure plot for posits, and its summary table:

Addition Closure =Exact, =Inexact, =NaN

–maxreal zero maxreal–m
ax

re
al

ze
ro

m
ax

re
al

Addition Closure
25.005% exact
74.994% inexact

0.002% NaN
0.000% overflow

The first  thing you notice is that  the black regions where sums are exact  are much broader than
they were for floats. Those are the regions where posits of similar magnitude but opposite sign are
being  added,  resulting  in  cancellation  of  digits.  When  the  magnitudes  are  near  the  center  of  the
dynamic  range,  scraping  off  digits  results  in  a  smaller  magnitude  number  that  requires  fewer
fraction bits to represent exactly. Tapered precision is just what you want for those situations, and
those  situations  happen  more  often  with  posits  than  floats  because  posits  have  more  numbers
near the center of the dynamic range.

It  may  look  like  there  are  no  NaN cases,  but  there  is  exactly  one  amber  square,  in  the  extreme
bottom  left,  representing  what  happens  when  you  add  ±∞  to  ±∞.  Overflow  cases  have  been
eliminated.

Here is a summary of addition performance for floats versus posits:
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The first  thing you notice is that  the black regions where sums are exact  are much broader than
they were for floats. Those are the regions where posits of similar magnitude but opposite sign are
being  added,  resulting  in  cancellation  of  digits.  When  the  magnitudes  are  near  the  center  of  the
dynamic  range,  scraping  off  digits  results  in  a  smaller  magnitude  number  that  requires  fewer
fraction bits to represent exactly. Tapered precision is just what you want for those situations, and
those  situations  happen  more  often  with  posits  than  floats  because  posits  have  more  numbers
near the center of the dynamic range.

It  may  look  like  there  are  no  NaN cases,  but  there  is  exactly  one  amber  square,  in  the  extreme
bottom  left,  representing  what  happens  when  you  add  ±∞  to  ±∞.  Overflow  cases  have  been
eliminated.

Here is a summary of addition performance for floats versus posits:

18.5% exact 25.0% exact

70.1% inexact 75.0% inexact

10.6% NaN 0.00153% NaN

0.757% overflow

Floats Posits

The greater incidence of exact sum operations is immediately evident. As with the single-operand
functions, we can sort the decimal errors and plot to compare accuracy loss for float versus posit
addition:
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For clarity, that graph only plots the first 64000 of the 65536 errors. Plotting the entire set shows
that the last  few posit  addition cases have a decimal error as high as 0.3,  but that only happens
when expressing numbers well beyond the dynamic range of floats anyway.
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The  worst  case  is  if  maxpos + maxpos  is  rounded  back  to  maxpos,  a  decimal  error  of
log10(2) ≈ 0.3. IEEE floats instead “round” the result to infinity, thereby creating an infinite decimal
error.

7.6.2 Comparing multiplication closure
We  use  a  similar  approach  for  comparing  how  well  floats  and  posits  multiply.  Unlike  addition,
multiplication can cause floats to underflow. The “gradual underflow” region provides some protec-
tion,  as  you  can  see  in  the  center  of  the  closure  graph.  Without  denormalized  floats,  the  blue
underflow region would be a full diamond shape.
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Multiplication Closure =Exact, =Inexact, =Overflow, =Underflow, =NaN

–maxreal zero maxreal–m
ax

re
al

ze
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al

Multiplication Closure
22.272% exact
49.481% inexact

4.950% underflow
12.646% overflow
10.651% NaN

The plot for posit multiplication is much less colorful, and that’s a good thing. Only two pixels light
up as NaN, right next where the axes have their “zero” label. That is where ±∞ is multiplied by 0.
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Multiplication Closure =Exact, =Inexact, =NaN

–maxreal zero maxreal–m
ax

re
al

ze
ro
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al

Multiplication Closure
18.002% exact
81.995% inexact

0.000% underflow
0.000% overflow
0.003% NaN

The floats have more cases where the product is exact than do posits, but at a terrible cost. As the
diagrams show, almost one-quarter of all float products will overflow or underflow, and that fraction
does not decrease for higher precision floats.
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22.3% exact 18.0% exact

51.1% inexact 82.0% inexact

10.7% NaN 0.00305% NaN

12.6% overflow

3.34% underflow

Floats Posits

The worst-case rounding for posits occurs for maxpos  ×  maxpos,  which is rounded back to max-
pos. For this set of posits, that represents a (very rare) loss of about 3.6 decimals. As the following
graph shows, posits are dramatically better at minimizing multiplication error than floats:
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7.7.3 Comparing division closure

Similarly,  we  can  compare  the  closure  for  division  operations.  It  is  almost  a  permutation  of  the
quadrants of the multiplication plot.
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Division Closure =Exact, =Inexact, =Overflow, =Underflow, =NaN

–maxreal zero maxreal–m
ax
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al

Division Closure
21.539% exact
51.276% inexact

6.866% underflow
9.668% overflow

10.651% NaN

The  situation  is  similar  to  that  for  multiplication;  somewhat  more  cases  of  exact  results  than  for
posits,  but  almost  a  quarter  of  the  cases  overflow  or  underflow  catastrophically.  Notice  that  the
posit closure plot comes much closer to looking symmetrical about the diagonal line from top left to
bottom right:
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Division Closure =Exact, =Inexact, =NaN

–maxreal zero maxreal–m
ax
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al

Division Closure
18.002% exact
81.995% inexact

0.000% underflow
0.000% overflow
0.003% NaN

The two NaN values are visible in the bottom left corner (±∞/±∞) and the center (0 /0). Here is a
summary of the comparison for division:
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21.5% exact 18.0% exact

53.1% inexact 82.0% inexact

10.7% NaN 0.00305% NaN

9.67% overflow

5.03% underflow

Floats Posits

The  plot  of  sorted  errors  is  almost  identical  to  the  one  for  multiplication,  so  there  is  no  need  to
repeat it here.

7.7.4 Comparing power closure

Let’s  try  to  compare  the  closure  for  xy  operations.  This  is  far  more  difficult  to  compute  than  the
standard  two-argument  arithmetic  operations,  and  many  of  the  results  are  complex-valued  and
thus turn into NaN. Also, 00 and 1∞ are NaN. The pattern is bizarre and spectacular:
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Power Closure =Exact, =Inexact, =Overflow, =Underflow, =NaN

–maxreal zero maxreal–m
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Power Closure
3.433% exact

25.734% inexact
16.835% underflow
17.194% overflow
36.804% NaN

The posit closure plot is similarly thought-provoking. In general, a negative real to the power of a
negative  real  has  an  imaginary  component  and  thus  trips  the  NaN  indicator  for  both  floats  and
posits, creating a large gold band on the left. But there are exceptions, like when the exponent is a
negative  even  integer.  In  the  extreme  bottom left  and  top  left  corner,  all  the  posits  are  negative
even integers.
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Power Closure =Exact, =Inexact, =NaN

–maxreal zero maxreal–m
ax

re
al
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al

Power Closure
2.579% exact

59.821% inexact
0.000% underflow
0.000% overflow

37.601% NaN

Notice that 00  is a NaN, with amber squares in the center of each plot. The float square is larger
because it has two kinds of zero, hence four ways to land on 00. Here is a summary of the compari-
son for the power function:
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3.43% exact 2.58% exact

49.2% inexact 59.8% inexact

10.7% NaN 37.6% NaN

18.8% overflow

17.9% underflow

Floats Posits

The plot of sorted errors eventually goes wildly high, but for the region of values that are not NaN
and  are  not  very  large  or  very  small  magnitude,  posits  do  their  usual  accuracy  improvement,
though there is  a  small  region on the left  where floats  get  a  “head start”  by  having slightly  more
exact values.
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8 A Quad-Precision Test Example

8.1 The Area of a Very Thin Triangle

Here’s a classic “thin triangle” problem, taken from What Every Computer Scientist  Should Know
About Floating-Point Arithmetic, by David Goldberg, published in the March, 1991 issue of Comput-
ing Surveys:

Find  the  area  A  of  a  triangle  with  sides  a,  b,  c,  when  two  of  the  sides  b  and  c  are  together
barely longer than half the longest side, a. Specifically, two of the sides are 3 ULPs larger than
half the longest side.
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a
b = a/2+3 ULPs c = a/2+3 ULPs

Think of it like pavement buckling in the hot sun. The classic formula for the area A uses a tempo-
rary value s:

s =
a + b + c

2
; A = s(s - a) (s - b) (s - c) .

The problem with  the formula  for  a  thin  triangle  is  that  s  is  very  close to  the value of  a,  and the
calculation  of  s  accumulates  a  rounding  error  of  two  ULPs…  so  the  relative  error  is  magnified
about as badly as one could ever imagine. We want to test the ability of posits to surpass floats at
high precision, so we will make the sides

a = 7
b = c = 7 + 3×2-111

which  are  values  that  an  IEEE  quad  precision  (128-bit)  float  can  express  exactly.  Suppose  all
values are in light years. Sides b and c are larger than half of a by only about 1/200 the diameter
of a proton, yet that is enough to pop the triangle up to a height of about 85 centimeters, the width
of  a  standard  door  opening!  Let’s  use  the  area  formula  with  Mathematica  extended  precision
rational  values to  see what  the correct  value for  the area is  (in  square light  years),  to  forty  deci-
mals of accuracy:

area = Modulea = 7, b = 7 / 2 + 3 × 2-111, c, s, c = b;
s = (a + b + c) / 2;
N s (s - a) (s - b) (s - c) , 39

3.14784204874900425235885265494550774498 × 10-16

That’s  in  square light  years,  a  hard quantity  to  visualize.  The area is  about  55 times the surface
area of the earth.

8.2 Thin triangle area with IEEE quad precision floats

IEEE quad precision uses 15 bits of exponent, so we can set the float environment and check the
dynamic range as follows:

setfloatenv[{128, 15}]
{N[smallsubnormal], N[maxfloat]}

6.475175119438025 × 10-4966, 1.189731495357232 × 104932

Here  is  the  calculation  with  floats,  using  the  underbar  to  mean  the  float  version  of  whatever  is
above it. That is, an underbar rounds whatever it underlines to the nearest float.

76     Posits4.nb



Here  is  the  calculation  with  floats,  using  the  underbar  to  mean  the  float  version  of  whatever  is
above it. That is, an underbar rounds whatever it underlines to the nearest float.

a = 7; b = c = 7 / 2 + 3 × 2-111;
s = ((a + b) + c)  2;

t = (s × (s - a)) × (s - b) × (s - c);

N t , 36

3.63481490842332134725920516158057683 × 10-16

That’s  incorrect  by  more  than  15  percent,  a  massive  error  considering  that  IEEE quad  precision
has about 33 decimals of precision. Coloring incorrect digits in orange, floats give us

3.63481490842332134725920516158057683 × 10-16

In other words, it got one decimal digit correct. Since the measurement unit is square light years,
the error is about as big as the surface area of the planet Neptune.

8.3 Thin triangle area with posits: an unfair fight

Now try it with posits, simply by using the overbar instead of the underbar. Choosing es = 7 gives a
posit environment a very similar dynamic range to that of IEEE 128-bit floats (quad precision):

setpositenv[{128, 7}]
{N[minpos], N[maxpos]}

9.73262367930742 × 10-4856, 1.027472172920962 × 104855

a = 7; b = c = 7 / 2 + 3 × 2-111;

s = ((a + b) + c)  2;

t = ((s × (s - a)) × (s - b)) × (s - c);
N t , 39

3.14784204874900425235885265494550774439 × 10-16

Or with the orange wrong-digit notation, posits give us an area of

 3.14784204874900425235885265494550774439 × 10-16

This ultra-precise answer (correct to 37 decimals) could be converted to a 16-bit posit and it would
still have far more accuracy than the 128-bit float result.

9 The Quadratic Formula
We can trot out the example used in The End of Error: Unum Computing, the use of the quadratic

formula  -b± b2-4 a c
2 a

 when b  is  quite  a  bit  larger  than a  and c,  causing loss of  significant  digits  in

one of the two roots. The coefficients used were a = 3, b = 100, c = 2.
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We can trot out the example used in The End of Error: Unum Computing, the use of the quadratic

formula  -b± b2-4 a c
2 a

 when b  is  quite  a  bit  larger  than a  and c,  causing loss of  significant  digits  in

one of the two roots. The coefficients used were a = 3, b = 100, c = 2.

The roots, correct to nine decimals, are

r1 =
1
6
-100 + 9976  = –0.0200120144⋯

r2 =
1
6
-100 - 9976  = –33.3133213⋯

The problem is that when b2  is much larger than a c  and the square root is inexact,  one root will
have its relative inaccuracy magnified by the subtraction of similar quantities. Traditional numerical
analysis texts teach that programmers should use a trick that rearranges the algebra.

Ideally, a number system should be robust enough that the unwary can use it without memoriz-
ing a trick for every situation.

First, find the roots using single-precision floats:
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setfloatenv[{32, 8}]

quadf = 

-100 + 1002 - 4 × 2 × 3

6
,

-100 - 1002 - 4 × 2 × 3

6
;

Print["Computed roots for floats: ", N[quadf, 9]]
Print"Absolute errors for floats: ",

NAbsquadf〚1〛 -
1
6

-100 + 9976 , Absquadf〚2〛 -
1
6

-100 - 9976 

Computed roots for floats: {-0.0200119019, -33.3133202}

Absolute errors for floats: 1.12566 × 10-7, 1.159 × 10-6

Here is the same calculation using posits:

setpositenv[{32, 2}]

quadp = 
-100 + 1002 - 4 × 2 × 3

6
,

-100 - 1002 - 4 × 2 × 3
6

;

Print["Computed roots for posits: ", N[quadp, 9]]
Print"Absolute errors for posits: ",

NAbsquadp〚1〛 -
1
6

-100 + 9976 , Absquadp〚2〛 -
1
6

-100 - 9976 

Computed roots for posits: {-0.0200120609, -33.3133216}

Absolute errors for posits: 4.64572 × 10-8, 2.71512 × 10-7

The comparison is easier to see using orange wrong-digit notation:

Floats Posits
r1 -0.02001190⋯ -0.02001206⋯ posits get six digits right instead of four
r2 -33.3133202⋯ -33.3133216⋯ posits get eight digits right instead of seven

Incidentally,  if  we did  use the algebraic rearrangement trick, posits still  beat floats. The trick is to

write -b+ b2-4 a c
2 a

 as 2 c

-b- b2-4 a c
 to avoid scraping off  significant digits by subtracting similar num-

bers. Like most numerical tricks, it is far from obvious, has to be worked out with tedious algebra,
and is  prone to  errors  in  coding  it.  Here  is  the  smaller  magnitude  root,  computed  using  the  trick
with floats:
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quadf =
2 × 2

-100 - 1002 - 4 × 2 × 3
; N[quadf, 9]

NAbsquadf -
1
6

-100 + 9976 

-0.0200120136

8.07458 × 10-10

When the trick is used with posits, the error is about 8 times smaller:

quadp =
4

-100 - 1002 - 4 × 2 × 3

; N[quadp, 9]

NAbsquadp -
1
6

-100 + 9976 

-0.0200120143

1.08966 × 10-10

That is,

Floats Posits
r1 -0.0200120136⋯ -0.0200120143⋯ posits get eight digits right instead of seven.

10 Fused Operations and the Quire Data Type

10.1 An overview of “deferred rounding”

So far, we have shown how posits could be a drop-in replacement for floats. However, they can be
far more powerful than that. After porting a code from floats to posits, if the improved accuracy is
still not enough (like when trying to replace 64-bit floats with 32-bit posits), the quire is easy to use
and  can  produce  massive  increases  in  answer  quality.  There  is  nothing  like  it  in  floating-point
environments  because  the  IEEE  754  committee  has,  for  over  thirty  years,  firmly  and  repeatedly
rejected requests to put something like it into the Standard. 

The  most  recent  version  (2008)  of  the  IEEE  754  standard  includes  the  fused  multiply-add  in  its
repertoire. “Fusing” means deferring the rounding until  the last operation in a computation involv-
ing  more  than  one  operation,  by  performing  all  operations  using  exact  integer  arithmetic  in  a
scratch  area  with  a  set  size.  It  is  not  the  same  as  extended-precision  arithmetic,  which  can
increase the size of  integers until  the computer  runs out  of  memory.  The posit  environment  sup-
ports the following fused operations, using a fixed-point scratch value called a quire.

Fused multiply-add (a×b) + c
Fused add-multiply (a + b)×c
Fused multiply-multiply-subtract (a×b) - (c×d)
Fused sum ∑ai
Fused dot product (scalar product) ∑ai bi

(By the way, the dictionary tells that “quire” was a medieval term for a booklet made from a fixed
number of pieces of paper or parchment.) We need to find out how many bits of quire are needed
as a function of nbits and es. Notice that all of the operations in the above list are subsets of the
fused dot product in terms of their processor hardware requirements.

As with all unum environments, fusing of operations must be explicit, never covert. If a program-
mer writes
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So far, we have shown how posits could be a drop-in replacement for floats. However, they can be
far more powerful than that. After porting a code from floats to posits, if the improved accuracy is
still not enough (like when trying to replace 64-bit floats with 32-bit posits), the quire is easy to use
and  can  produce  massive  increases  in  answer  quality.  There  is  nothing  like  it  in  floating-point
environments  because  the  IEEE  754  committee  has,  for  over  thirty  years,  firmly  and  repeatedly
rejected requests to put something like it into the Standard. 

The  most  recent  version  (2008)  of  the  IEEE  754  standard  includes  the  fused  multiply-add  in  its
repertoire. “Fusing” means deferring the rounding until  the last operation in a computation involv-
ing  more  than  one  operation,  by  performing  all  operations  using  exact  integer  arithmetic  in  a
scratch  area  with  a  set  size.  It  is  not  the  same  as  extended-precision  arithmetic,  which  can
increase the size of  integers until  the computer  runs out  of  memory.  The posit  environment  sup-
ports the following fused operations, using a fixed-point scratch value called a quire.

Fused multiply-add (a×b) + c
Fused add-multiply (a + b)×c
Fused multiply-multiply-subtract (a×b) - (c×d)
Fused sum ∑ai
Fused dot product (scalar product) ∑ai bi

(By the way, the dictionary tells that “quire” was a medieval term for a booklet made from a fixed
number of pieces of paper or parchment.) We need to find out how many bits of quire are needed
as a function of nbits and es. Notice that all of the operations in the above list are subsets of the
fused dot product in terms of their processor hardware requirements.

As with all unum environments, fusing of operations must be explicit, never covert. If a program-
mer writes

x := (a * b) +c;

where all  variables  are  of  the same type,  a  compiler  designer  might  be tempted to  “help  out”  by
using  the  fused  multiply-add.  A  likely  result  is  that  the  programmer  gets  a  different  answer  than
that  produced by another  compiler  that  rounds after  the multiply  and again rounds after  the add.
Tracking that  down can produce many wasted hours  trying to  figure  out  why.  In  a  posit  environ-
ment, you could request the fused multiply-add with a routine call:

x := FMA (a, b, c);

But what might be easier to read, and more flexible to use, is to declare a quire variable, like this:

posit a, b, c, x;
quire q;
q = (a * b) + c;
x = q;

Because the multiply-accumulation into the quire has no rounding error, this is as repeatable and
reproducible as an integer multiply-add. It  is more flexible,  because you could also do things this
way:

posit a, b, c, x;
quire q;
q = a * b;
(* Some other code can go here, like to compute c. *)

q += c;
x = q;

We go far beyond fusing just one multiply-add, however, and permit fusing of a bunch of them. At
first,  you  might  think  this  would  require  an  extended-precision  math  library  and  an  unpredictable
amount of storage, but that is not the case. We simply have to put a limit on how many accumu-
lates we can do without risk of overflow. It turns out that it can be quite a high limit, especially for
32-bit and 64-bit posits.

The quire approach was introduced by Ulrich Kulisch in the 1970s, at a time when transistors were
too  precious  to  think  about  putting  a  fixed-size  register  with  hundreds  of  bits  into  a  processor.
Kulisch and his colleagues have developed a vast and rich set of techniques for doing large-scale
calculations  where  the  results  are  accurate  to  a  single  rounding  error.  He  called  the  storage  an
“exact accumulator,” but that’s a mouthful and we prefer the simpler coined term, “quire.” All of the
techniques Kulisch created are once again available in posit environments.

Perhaps the biggest surprise is this: Using a quire can make a code faster, not slower. And not by
just  a  little  bit:  the  most  recent  hardware  tests  by  Koenig  and  Biancolin  at  the  ASPIRE  lab  at
Berkeley show that quire operations are about 3 to 6 times faster than rounding after every opera-
tion.  If  an  approach  makes  code  that  much  faster  and  also  makes  it  much  more  accurate,  why
would anyone not want to adopt it?
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We go far beyond fusing just one multiply-add, however, and permit fusing of a bunch of them. At
first,  you  might  think  this  would  require  an  extended-precision  math  library  and  an  unpredictable
amount of storage, but that is not the case. We simply have to put a limit on how many accumu-
lates we can do without risk of overflow. It turns out that it can be quite a high limit, especially for
32-bit and 64-bit posits.

The quire approach was introduced by Ulrich Kulisch in the 1970s, at a time when transistors were
too  precious  to  think  about  putting  a  fixed-size  register  with  hundreds  of  bits  into  a  processor.
Kulisch and his colleagues have developed a vast and rich set of techniques for doing large-scale
calculations  where  the  results  are  accurate  to  a  single  rounding  error.  He  called  the  storage  an
“exact accumulator,” but that’s a mouthful and we prefer the simpler coined term, “quire.” All of the
techniques Kulisch created are once again available in posit environments.

Perhaps the biggest surprise is this: Using a quire can make a code faster, not slower. And not by
just  a  little  bit:  the  most  recent  hardware  tests  by  Koenig  and  Biancolin  at  the  ASPIRE  lab  at
Berkeley show that quire operations are about 3 to 6 times faster than rounding after every opera-
tion.  If  an  approach  makes  code  that  much  faster  and  also  makes  it  much  more  accurate,  why
would anyone not want to adopt it?

10.2 Quire size

The  smallest  magnitude  nonzero  value  that  can  arise  in  doing  a  dot  product  is  minpos2.  Every
other  product  is  an integer  multiple  of  minpos2.  If  we have to  perform the dot  product  of  vectors
{maxpos, minpos}  and  {maxpos, minpos}  as  an  exact  operation  in  a  scratch  area,  we  need  an
integer big enough to hold maxpos2 minpos2. Recall that maxpos = useednbits-2  and useed = 22es

.
Also, minpos = 1 /maxpos. So

maxpos2

minpos2 = useed 2×2×(nbits-2) = 2(4 nbits-8) 2es

As  a  fixed-point  unsigned  integer,  (4 nbits - 8) 2es + 2  bits  can  hold  the  sum  of  minpos2  and
maxpos2. For example, for 8-bit posits with es = 0, minpos is 2-6 = 1 /64 and maxpos is 26 = 64. So
you need 12 bits to the right of the binary point, and 13 bits to the left of the binary point, to hold
maxpos2 + minpos2 = 4096 + 1 /4096 as a fixed-point integer:

4096 +
1

4096
= 1000000000000.000000000001

We need one more bit for the sign. But we also need to allow for some carry bits in the worst case
where  the  numbers  added  together  were  all  maxpos2  (or  all  -maxpos2).  If  we  accommodate  at
least a billion terms in the sum, and sometimes far more, there shouldn't be much complaining. So
add 30 bits to the integer size. 230 is a little over a billion: 1073741824.), And for good measure,
round that up to the nearest power of two so the hardware design is clean. Here is our definition
for the size of the quire, quiresize, for posit sizes from 4 to 256. (The reason for including sizes
4 and 8 will become more clear when we define rules for the valid type.)

quiresize[n_, e_] := 2Log2,(4 n-8) 2e+1+30

quireexcess[n_, e_] := quiresize[n, e] - ((4 n - 8) 2e + 2)

With these we can generate the table for the standard posit sizes:
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With these we can generate the table for the standard posit sizes:

Posit size,
nbits

Posit es
value

Quire size
(bits)

Excess bits
for carries

8 0 64 38

16 1 256 142

32 2 512 30

64 3 2048 62

128 4 8192 126

256 5 32768 254

The quire sizes are large if you think of them as registers, but far smaller than what it takes to do
extended-precision  arithmetic  like  Mathematica  uses.  A  modern  processor  core  might  have  64
general-purpose 64-bit registers; the quire for 64-bit posits would fit in 32 of those.

Earlier, we mentioned that posits as small as 8 bits suffice for Machine Learning. That is true even
if the multiply-accumulation is stored with only 8 bits. It seems likely that the quire for 8-bit posits,
being only 64 bits in size and capable of doing a quarter-trillion accumulates without the possibility
of overflow, could be quite useful in such applications, perhaps improving the rate of convergence.

10.3 What quires can and cannot do

A programmer might think, “These quire variables are so safe and accurate, I think I’ll make all my
variables of quire type.” Not so fast. The list of things you can reasonably ask hardware to do is a
short one, and it does not include multiplying the quire by anything. It’s for accumulation. Assume
there is only one quire register in a core. The assembler instructions should include

◼ Clear the quire
◼ Load the quire from memory
◼ Store the quire to memory
◼ Add the product of two posits to the quire
◼ Subtract the product of two posits from the quire
◼ Add a quire stored in memory to the quire
◼ Subtract a quire stored in memory from the quire
◼ Convert a quire into a posit

From those, it is easy to build up expressions like a×d - b*c  in the quire. Simple summation is a
special  case  of  multiplying  by  1,  as  is  done  with  fused  multiply-add  hardware.  If  you  want  to
multiply  the  number  in  the  quire  by  something,  you  have  to  convert  it  back  to  a  posit.  I  have  to
admit  to being tempted to add one more assembler instruction to the list  because it  would be so
incredibly useful:
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From those, it is easy to build up expressions like a×d - b*c  in the quire. Simple summation is a
special  case  of  multiplying  by  1,  as  is  done  with  fused  multiply-add  hardware.  If  you  want  to
multiply  the  number  in  the  quire  by  something,  you  have  to  convert  it  back  to  a  posit.  I  have  to
admit  to being tempted to add one more assembler instruction to the list  because it  would be so
incredibly useful:

◼ Convert the square root of a quire into a posit

That  would  let  you  evaluate  things  like  r = x2 + y2 + z2  with  only  one  rounding  error,  and  the
result  r  would  be  about  the  same  magnitude  as  the  largest  of  x,  y,  and  z  instead  of  having  to
temporarily  store  r2  in  a  posit,  which  might  land  where  the  magnitude  is  so  large  or  small  that
accuracy is lost. Physics simulations are full of such calculations of distance, and the square root
algorithm is a straightforward one to build into hardware; the concern is that for a large quire, the
operation could take many clock cycles to determine the correct rounding, making context switch-
ing coarse-grained and difficult.

We won’t be seeing the quire explicitly in the sections that follow, because we have the luxury of
operating in Mathematica, for which quire exact operations are small subset of what it can do with
its built-in extended-precision arithmetic. If we don’t put an overbar on a result, it is assumed exact
and not rounded. We simply have to restrict the operations where we defer rounding to the above
list.

11 Fast Fourier Transforms (incomplete section)
Here  is  a  garden-variety  complex  Fast  Fourier  Transform,  in  both  float  form and posit  form.  The
float  form  uses  fused  multiply-add,  and  the  posit  form  goes  slightly  farther  in  fusing  complex
operations of the form a*b - c*d.
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(* Conventional power-of-two Fast Fourier Transform with floats. *)

cfftf[rr_List, n_Integer, iflg_Integer] :=
Module{gg = rr, k = n / 2, th = If[iflg ≥ 0, -π, π], tw, ww, tr, ti, i, j},

Whilek ≥ 1,

ww = -2 (Sin[th / (2 k)])2, Sin[th / k];
tw = {1, 0};
Forj = 0, j < k, j++,

Fori = 1, i ≤ n, i += 2 k,

{tr, ti} = gg〚i+j,1〛 - gg〚i+j+k,1〛, gg〚i+j,2〛 - gg〚i+j+k,2〛;

gg〚i+j,1〛, gg〚i+j,2〛 = gg〚i+j,1〛 + gg〚i+j+k,1〛, gg〚i+j,2〛 + gg〚i+j+k,2〛;

gg〚i+j+k,1〛, gg〚i+j+k,2〛 = tw〚1〛 * tr - tw〚2〛 * ti, tw〚1〛 * ti + tw〚2〛 * tr;

tr = tw〚1〛 * ww〚1〛 - tw〚2〛 * ww〚2〛 + tw〚1〛;

tw〚2〛 = tw〚1〛 * ww〚2〛 + tw〚2〛 * ww〚1〛 + tw〚2〛;

tw〚1〛 = tr;

k = k / 2;
Fori = j = 0, i < n - 1, i++,
Ifi < j,
{tr, ti} = gg〚j+1,1〛, gg〚j+1,2〛;
gg〚j+1,1〛, gg〚j+1,2〛 = gg〚i+1,1〛, gg〚i+1,2〛;
gg〚i+1,1〛, gg〚i+1,2〛 = {tr, ti};

k = n / 2; While[k ≤ j, {j = j - k; k = k / 2}]; j = j + k;

gg  n 
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(* Conventional power-of-two Fast Fourier Transform with posits. *)

cfftp[rr_List, n_Integer, iflg_Integer] :=
Module{flg = 0, gg = rr, k = n / 2, th = If[iflg ≥ 0, -π, π], tw, ww, tr, ti, i, j},

Whilek ≥ 1,

ww = -2 (Sin[th / (2 k)])2, Sin[th / k];
tw = {1, 0};
Forj = 0, j < k, j++,
Fori = 1, i ≤ n, i += 2 k,
{tr, ti} = gg〚i+j,1〛 - gg〚i+j+k,1〛, gg〚i+j,2〛 - gg〚i+j+k,2〛;
gg〚i+j,1〛, gg〚i+j,2〛 = gg〚i+j,1〛 + gg〚i+j+k,1〛, gg〚i+j,2〛 + gg〚i+j+k,2〛;
gg〚i+j+k,1〛, gg〚i+j+k,2〛 = tw〚1〛 * tr - tw〚2〛 * ti, tw〚1〛 * ti + tw〚2〛 * tr;

tr = tw〚1〛 * ww〚1〛 - tw〚2〛 * ww〚2〛 + tw〚1〛 * 1; (* Short fused dot product*)
tw〚2〛 = tw〚1〛 * ww〚2〛 + tw〚2〛 * ww〚1〛 + tw〚2〛 * 1;
tw〚1〛 = tr;

If[flg ⩵ 0, gg /= 2; flg = 1, flg = 0];
k = k / 2;

Fori = j = 0, i < n - 1, i++,
Ifi < j,
{tr, ti} = gg〚j+1,1〛, gg〚j+1,2〛;
gg〚j+1,1〛, gg〚j+1,2〛 = gg〚i+1,1〛, gg〚i+1,2〛;
gg〚i+1,1〛, gg〚i+1,2〛 = {tr, ti};

k = n / 2;
While[k ≤ j, {j = j - k; k = k / 2}]; j = j + k;

gg

First, try using half-precision floats.
setfloatenv[{16, 5}]

For example, just put a 1 in the second entry, and see if we can do a forward FFT and an inverse
FFT and get something similar to what we started with:
n = 16; rr = Table[{0, 0}, n]; rr〚2〛 = {1, 0}; rr
{{0, 0}, {1, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0},
{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}

86     Posits4.nb



rrf = cfftf[cfftf[rr, n, 1], n, -1]

{0, 0}, 1, -
985

8388608
, {0, 0}, -

1333

16777216
,

819

16777216
,

{0, 0}, -
1

32768
, -

1

32768
, {0, 0}, -

437

16777216
,

821

67108864
,

{0, 0}, 0,
473

8388608
, {0, 0}, 

437

16777216
,

821

67108864
,

{0, 0}, 
1

32768
, -

1

32768
, {0, 0}, 

1333

16777216
,

819

16777216


The rounding errors hit the points where the sines and cosines are not special angles. Here is the
total error:
N[Total[Total[Abs[rr - rrf]]]]
0.000628978

Now do the same thing with posits:
setpositenv[{16, 2}];
rrp = cfftp[cfftp[rr, n, 1], n, -1]
N[Total[Total[Abs[rr - rrp]]]]

{0, 0}, 1, -
261

8388608
, {0, 0}, 0,

49

16777216
, {0, 0},


69

2097152
,

61

1048576
, {0, 0}, 0,

49

16777216
, {0, 0}, 0,

53

2097152
, {0, 0},

0,
49

16777216
, {0, 0}, 

187

2097152
, -

67

1048576
, {0, 0}, 0,

49

16777216


0.000312209

The  usual  benchmark  is  for  1024  points.  Fill  all  the  values  with  –1,  0,  or  1  chosen  randomly
(seismic  explorers  and  radio  astronomers  often  use  such  low-precision  inputs)  and  measure  the
total error:
SeedRandom[141213562];
n = 1024;
rr = Table[{Random[], Random[]}, n];
rrf = cfftf[cfftf[rr, n, 1], n, -1];
N[Total[Total[Abs[rr - rrf]]]]
1.74042

Here is the 1024-point case done with posits:
setpositenv[{16, 1}]
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SeedRandom[141213562];
n = 1024;
rr = Table[{Random[], Random[]}, n];
rrp = cfftp[cfftp[rr, n, 1], n, -1];
N[Total[Total[Abs[rr - rrp]]]]
0.617407

12 Linear Algebra with Posits: A New Paradigm

12.1 Gaussian elimination is an iterative method

One thing floats do well is to guess answers x to a system of linear equations, A x = b where A is
an n  by n matrix  and b  is  a given vector  of  n  values.  (At  least,  they do well  under certain condi-
tions, and people have learned to live with those restrictions.) The LINPACK benchmark fills A with
random numbers between -1 and 1, and assigns the sum of each row to the values of b, so that
the  answer  should  be  x = {1, 1, …, 1}.  We  use  both  the  underbar  and  overbar  operator  to  make
sure each number in A is in the common vocabulary of the two number systems. That benchmark
specifies 64-bit representation of numbers in a way that looks like some kind of floating-point, not
necessarily  IEEE  754  Standard;  therefore,  64-bit  posits  can  certainly  be  used  on  the  LINPACK
benchmark!

There’s  a  good  reason  for  requiring  64-bit  precision,  which  we  will  now  explore.  What  would
happen, say, if we tried using 16-bit floats and posits? Also, what happens if we recognize that so-
called  “direct  solvers”  are  simply  iterative  solvers  that  usually  stop  after  one  iteration?  (Unless
Gaussian  elimination  is  performed  with  infinite  precision,  it  will  only  approximate  the  underlying
mathematics and in general must be applied iteratively to correct the residual error.)

We also do something new, which is to correct an error in the design of the benchmark rules.
The driver assumes the answer is x = {1, 1, …, 1}, but that incorrectly assumes that there was no
rounding in computing b! The values in  A have a range of magnitudes, so the exact sum of a row
will in general contain more significant bits than fit exactly into the fraction part of a float or a posit.
Therefore, we tweak the smallest value in each row of A to make sure that there is no rounding in
the  right-hand  side  b.  Here  is  an  example  using  16-bit  IEEE  floats.  The  powQ  helper  function
returns True if a number a can be exactly represented in p bits, and False if it cannot.

powQ[a_, p_] := Module{abits = RealDigits[a, 2], len, nd},
nd = abits〚2〛;
len = Length[abits〚1〛];
Which
p > len - nd, False,
abits〚1,p+nd〛 ⩵ 0, False,
True, True

Set up the environments. Create the A matrix one row at a time, tweaking it in the least-significant
bits until it sums to a number that can be represented exactly; if the tweaking fails, which happens
in  certain  uncommon  cases,  it  simply  generates  a  fresh  row  and  tries  again.  This  may  seem
reminiscent  of  reverse  error  analysis,  where  the  answer  produced  by  arithmetic  that  rounds  is
considered to be the exact solution to a problem that is close to the one specified; however, that is
not really what this is. This is completing the design goal of LINPACK, which is to create an ideal-
ized problem where both the input values and the correct answer are expressible in the numerical
vocabulary of the computing environment.

88     Posits4.nb



Set up the environments. Create the A matrix one row at a time, tweaking it in the least-significant
bits until it sums to a number that can be represented exactly; if the tweaking fails, which happens
in  certain  uncommon  cases,  it  simply  generates  a  fresh  row  and  tries  again.  This  may  seem
reminiscent  of  reverse  error  analysis,  where  the  answer  produced  by  arithmetic  that  rounds  is
considered to be the exact solution to a problem that is close to the one specified; however, that is
not really what this is. This is completing the design goal of LINPACK, which is to create an ideal-
ized problem where both the input values and the correct answer are expressible in the numerical
vocabulary of the computing environment.

setfloatenv[{16, 5}]
setpositenv[{16, 2}]
SeedRandom[141213562]; n = 100;
b = Table[0, n]; a = Table[b, n];
Module{abits, at, bbits, bt, (*den,*)fs, i, j, pow, row, temp},

Fori = 1, i ≤ n, i++,
Label[L1];
at = TableRandomReal[{-1, 1}], {j, 1, n};

bt = 

j=1

n
at〚j〛;

fs = Min[nfbits - esize, 1 + Length[fractionbits[x2p[bt]]]];
bbits = RealDigits[bt, 2];
Forj = Length[bbits〚1〛], j ≥ fs + 1, j--,
pow = j - bbits〚2〛;
Ifbbits〚1,j〛 ⩵ 1,
temp = 1; Whiletemp ≤ n¬ powQat〚temp〛, pow, temp++;
If[temp > n, Goto[L1]]; (* Failed; go get another row. *)

at〚temp〛 -= 2-pow



;
a〚i〛 = at;

b〚i〛 = 

j=1

n
at〚j〛;



Check  that  the  row  sums  equal  the  right-hand  side,  using  exact  arithmetic  (easily  done  using  a
quire):

Table[Sum[a〚i,k〛, {k, 1, n}] - b〚i〛, {i, 1, n}]

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

We  solve  the  system  LINPACK  style.  Gaussian  elimination  with  partial  pivoting,  rounding  after
every  operation.  Here’s  the  algorithm,  about  as  terse  as  it  is  possible  to  make it  without  making
calls to BLAS-like routines.
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linsolver[a_, b_] := Module
{aa = Transpose[Join[Transpose[a], {b}]], piv, i, j, k, n = Length[b], temp},
Fork = 1, k ≤ n, k++,
piv = k - 1 + (Position[aa〚k;;n,k〛, Max[aa〚k;;n,k〛]])〚1,1〛;
Forj = 1, j ≤ n + 1, j++, temp = aa〚piv,j〛;
aa〚piv,j〛 = aa〚k,j〛;
aa〚k,j〛 = temp;

temp = 1 / aa〚k,k〛; Forj = k, j ≤ n + 1, j++, aa〚k,j〛 *= temp;
Forj = k + 1, j ≤ n + 1, j++,
temp = aa〚k,j〛;
Fori = k + 1, i ≤ n, i++,
aa〚i,j〛 -= aa〚i,k〛 * temp;

Forj = n, j > 1, j--,
temp = aa〚j,n+1〛;
Fori = j - 1, i ≥ 1, i--,
aa〚i,n+1〛 -= aa〚i,j〛 * temp;

aa〚1;;n,n+1〛

That  solver  will  use  exact  rational-number  arithmetic  in  Mathematica,  so  test  it  on  our  sample
matrix:

linsolver[a, b]

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

Had we not “purified” the input matrix,  we would not have gotten that answer but instead seen a
mess of rational numbers close to 1 with huge integers for their numerator and denominator. 

For  the  IEEE  float  version  of  the  solver,  we  help  its  accuracy  as  much  as  we  can  by  using  the
fused multiply-add that is now part of the IEEE 754 Standard (2008). There are only four places in
the following code where we need to round to the nearest float, as shown by the underscoring.
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linsolverf[a_, b_] := Module{aa = Transpose[Join[Transpose[a], {b}]],
piv, i, j, k, nn = Length[b], temp},

Fork = 1, k ≤ nn, k++,
piv = k - 1 + (Position[Abs[aa〚k;;nn,k〛], Max[Abs[aa〚k;;nn,k〛]]])〚1,1〛;
Forj = 1, j ≤ nn + 1, j++, temp = aa〚piv,j〛;
aa〚piv,j〛 = aa〚k,j〛;
aa〚k,j〛 = temp;

(*Print[aa〚k,k〛];
*)temp = 1 / aa〚k,k〛;

Forj = k, j ≤ nn + 1, j++, aa〚k,j〛 = temp * aa〚k,j〛;

Forj = k + 1, j ≤ nn + 1, j++,
temp = aa〚k,j〛;
Fori = k + 1, i ≤ nn, i++,

aa〚i,j〛 = aa〚i,j〛 - aa〚i,k〛 * temp;
(* Backsolve *)

Forj = nn, j > 1, j--,
temp = aa〚j,nn+1〛;
Fori = j - 1, i ≥ 1, i--,

aa〚i,nn+1〛 = aa〚i,nn+1〛 - aa〚i,j〛 * temp;

aa〚1;;nn,nn+1〛

We should get  a  list  of  rational  numbers (floats)  that  are pretty  close to  1.  We also compute the
average deviation of the answer from all 1s:
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xf = linsolverf[a, b]
Print"Average float error: ", NSumAbs[xf - 1]〚i〛, {i, 1, n}  n


2029

2048
,
1919

2048
,
245

256
,
571

512
,
2041

2048
,
271

256
,
551

512
,
1047

1024
,
1999

2048
,
1829

2048
,
241

256
,
267

256
,
1943

2048
,

1979

2048
,
1969

2048
,
271

256
,
1017

1024
,

847

1024
,
541

512
,
1975

2048
,
573

512
,
2017

2048
,
15

16
,
2035

2048
,
121

128
,
1033

1024
,

65

64
,
143

128
,
515

512
,

957

1024
,
1061

1024
,
1941

2048
,
1061

1024
,

921

1024
,
1961

2048
,
1123

1024
,
539

512
,
1087

1024
,
229

256
,

1013

1024
,
1167

1024
,
1995

2048
,
111

128
,

961

1024
,
259

256
,
2019

2048
,
1845

2048
,
549

512
,
1937

2048
,
491

512
,
1009

1024
,

251

256
,
1859

2048
,
2025

2048
,
239

256
,
1123

1024
,
283

256
,
1635

2048
,
1083

1024
,

983

1024
,
1983

2048
,
129

128
,
1075

1024
,

517

512
,
527

512
,
1051

1024
,
475

512
,
529

512
,

991

1024
,
1837

2048
,
517

512
,
1945

2048
,
1857

2048
,
539

512
,
1045

1024
,

937

1024
,

273

256
,
2021

2048
,
1959

2048
,
1045

1024
,
1089

1024
,
545

512
,
2025

2048
,
1885

2048
,
2015

2048
,
1033

1024
,
1119

1024
,
1005

1024
,

1011

1024
,
535

512
,
35

32
,
1877

2048
,
1055

1024
,

939

1024
,
479

512
,
133

128
,
123

128
,

953

1024
,
1029

1024
,
1973

2048


Average float error: 0.0530811

Half-precision IEEE floats have decimal accuracy that wobbles between about 3 and 3.3 decimals,
but we wound up with only about 1 decimal of accuracy (worst case). The posit version is identical
to  the  float  version,  for  comparison  purposes,  and   also  includes  the  fused  multiply-add.  (It  is
possible to rearrange the loops so that the innermost loop is a dot product, and thus get another
order n reduction in the number of roundings undergone by each result value.)
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linsolverp[a_, b_] := Module{aa = Transpose[Join[Transpose[a], {b}]],
piv, i, j, k, nn = Length[b], temp},

Fork = 1, k ≤ nn, k++,
piv = k - 1 + (Position[Abs[aa〚k;;nn,k〛], Max[Abs[aa〚k;;nn,k〛]]])〚1,1〛;

Forj = 1, j ≤ nn + 1, j++, temp = aa〚piv,j〛;
aa〚piv,j〛 = aa〚k,j〛;
aa〚k,j〛 = temp;

temp = 1 / aa〚k,k〛;
Forj = k, j ≤ nn + 1, j++, aa〚k,j〛 = temp * aa〚k,j〛;
Forj = k + 1, j ≤ nn + 1, j++,
temp = aa〚k,j〛;
Fori = k + 1, i ≤ nn, i++,
aa〚i,j〛 = aa〚i,j〛 - aa〚i,k〛 * temp;

(* Backsolve *)

Forj = nn, j > 1, j--,
temp = aa〚j,nn+1〛;
Fori = j - 1, i ≥ 1, i--,
aa〚i,nn+1〛 = aa〚i,nn+1〛 - aa〚i,j〛 * temp;

aa〚1;;nn,nn+1〛

Again  we  can  produce  the  list  of  100  output  values,  rational  numbers  close  to  1,  and  find  their
average  deviation  from  1.  The  average  float  error  is  about  50  percent  greater  than  the  average
posit error.
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xp = linsolverp[a, b]
Print"Average posit error: ", NSumAbs[xp - 1]〚i〛, {i, 1, n}  n
ListPlot[{Sort[Abs[xp - 1]], Sort[Abs[xf - 1]]}, PlotRange → {All, All},
PlotStyle → { , }, AxesLabel → {"", "Sorted errors"}]


2015

2048
,
2137

2048
,
1057

1024
,
1875

2048
,
4027

4096
,
3973

4096
,
2031

2048
,
1029

1024
,
4017

4096
,
273

256
,
1981

2048
,

4057

4096
,
263

256
,
553

512
,
2141

2048
,

989

1024
,
1989

2048
,
1153

1024
,
3835

4096
,
511

512
,
3937

4096
,
1037

1024
,

2147

2048
,
1019

1024
,

985

1024
,
2095

2048
,
1993

2048
,
245

256
,
537

512
,
1067

1024
,
519

512
,
3913

4096
,
1933

2048
,

2089

2048
,
4055

4096
,

969

1024
,
3991

4096
,
3937

4096
,
2109

2048
,
1041

1024
,
3625

4096
,
2139

2048
,
2235

2048
,
1051

1024
,

4095

4096
,
261

256
,
2179

2048
,
499

512
,
3941

4096
,
4071

4096
,
4041

4096
,
263

256
,
2065

2048
,
1931

2048
,
2207

2048
,

3821

4096
,
493

512
,
2319

2048
,
513

512
,
1065

1024
,
261

256
,
3957

4096
,
263

256
,
261

256
,
3983

4096
,
3877

4096
,

2099

2048
,

991

1024
,
2037

2048
,
2171

2048
,
4003

4096
,
1051

1024
,
2175

2048
,
3893

4096
,
2103

2048
,
261

256
,
1937

2048
,

3995

4096
,
2099

2048
,
3879

4096
,
2019

2048
,
4053

4096
,
3967

4096
,
535

512
,
4043

4096
,
537

512
,
1937

2048
,
1963

2048
,

2015

2048
,
511

512
,
251

256
,
67

64
,
2055

2048
,
2233

2048
,
2169

2048
,
257

256
,
2169

2048
,
263

256
,
3949

4096
,
3975

4096


Average posit error: 0.0361914
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Sorted errors

Using 16-bit numbers for a matrix as large as 100-by-100 is clearly risky, since we only have about
three decimals of accuracy but need to accumulate sums of up to 100 numbers. We can compute
the residual, which is the vector of discrepancies b - Ax. In the case of posits, the residual can be
calculated with the quire, rounding only once. For floats, it  needs to be spelled out with a matrix-
vector multiply loop using fused multiply-adds.
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rp = b - a.xp;
rf = Table[1, n];
Fori = 1, i ≤ n, i++, s = 0;

Forj = 1, j ≤ n, j++,

s = s + a〚i,j〛 × xf〚j〛;

rf〚i〛 = b〚i〛 - s;

If  we  now  solve  for  the  residual  on  the  right-hand  side,  we  can  use  the  solutions  to  correct  the
result.  This  is  really  a  form  of  Newton-Raphson  iteration.  Incidentally,  we’re  being  lazy  here  by
calling the solver again, since the solver factored the matrix into lower-upper form and all we have
to do is use that to backsolve, an order n2 amount of work instead of order n3 to do a linear solve
from scratch.

x1p = linsolverp[a, rp];
x1f = linsolverf[a, rf];

The corrected posit  form is now quite close, with several cases of hitting 1 exactly in the answer
vector.

xp = xp + x1p


1025

1024
,
1023

1024
,
2049

2048
,
257

256
,
2049

2048
,
1025

1024
,
2053

2048
,
2051

2048
,
2049

2048
,
4085

4096
,
4093

4096
, 1,

4093

4096
,

4093

4096
,
4089

4096
,
4095

4096
,
2049

2048
,
2041

2048
,
1025

1024
,
4091

4096
,
513

512
,
4095

4096
,
511

512
, 1,

1023

1024
,

2047

2048
,
1025

1024
,
2053

2048
,
4095

4096
,
2047

2048
,
2049

2048
,
2047

2048
,
1025

1024
,
2043

2048
,
1023

1024
,
2053

2048
,
2051

2048
,

1027

1024
,
4091

4096
,
4095

4096
,
2053

2048
,
4089

4096
,
2041

2048
,
2045

2048
,
2047

2048
, 1,

2043

2048
,
1025

1024
,
2047

2048
,

2047

2048
,
2049

2048
,
4093

4096
,
4089

4096
,
4095

4096
,
4087

4096
,
513

512
,
2053

2048
,
2039

2048
,
2049

2048
,
511

512
,
2047

2048
,

1,
1025

1024
, 1,

2049

2048
,
2049

2048
,
4089

4096
,
4095

4096
,
4093

4096
,
1023

1024
,
2049

2048
,
2047

2048
,
4087

4096
,
1025

1024
,

1,
4095

4096
,
513

512
,
4095

4096
,
2047

2048
,
1025

1024
,
2049

2048
,
1025

1024
, 1,

2045

2048
,
4095

4096
,
1023

1024
,
2051

2048
,

1,
2049

2048
, 1,

2053

2048
,
2045

2048
,
4095

4096
,
4085

4096
,
2045

2048
,
1025

1024
,
4093

4096
,
4089

4096
,
2047

2048
,
1025

1024


The  float  residual  correction  improves  only  the  result  only  by  about  a  factor  of  2,  and  still  never
lands exactly on the correct answer, 1:
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xf = xf + x1f


1023

1024
,
261

256
,
2037

2048
,
241

256
,
1035

1024
,
1999

2048
,
1989

2048
,

989

1024
,
2031

2048
,
1075

1024
,
1039

1024
,
2039

2048
,
525

512
,

1039

1024
,
263

256
,
1013

1024
,
1011

1024
,
1089

1024
,

993

1024
,
529

512
,
1955

2048
,
1023

1024
,
533

512
,
259

256
,
1049

1024
,

1,
2025

2048
,
1931

2048
,
509

512
,
131

128
,
2033

2048
,
525

512
,
63

64
,
267

256
,
517

512
,
1967

2048
,

995

1024
,
1987

2048
,

1053

1024
,
1027

1024
,
243

256
,
521

512
,
543

512
,
1057

1024
,
509

512
,
1027

1024
,
527

512
,
2001

2048
,
1035

1024
,
65

64
,

511

512
,
1051

1024
,
529

512
,
129

128
,
527

512
,
243

256
,
487

512
,
555

512
,
2019

2048
,
1051

1024
,
261

256
,
507

512
,
251

256
,

1027

1024
,
1015

1024
,
2009

2048
,
531

512
,
1031

1024
,
1039

1024
,
269

256
,
501

512
,
1039

1024
,
1059

1024
,
1001

1024
,
1017

1024
,

1061

1024
,
499

512
,
1029

1024
,
65

64
,
2041

2048
,
125

128
,

999

1024
,
257

256
,
267

256
,
1019

1024
,
129

128
,
493

512
,
1035

1024
,

515

512
,
2009

2048
,

973

1024
,
1055

1024
,
1013

1024
,
537

512
,
1057

1024
,
2007

2048
,
1047

1024
,
131

128
,
2025

2048
,
2021

2048


Here are the average deviations from an all-1s correct answer, and plots of the errors, sorted:

Print"Average float error: ", NSumAbs[xf - 1]〚i〛, {i, 1, n}  n;
Print"Average posit error: ", NSumAbs[xp - 1]〚i〛, {i, 1, n}  n;
ListPlot[{Sort[Abs[xp - 1]], Sort[Abs[xf - 1]]}, PlotRange → {All, All},
PlotStyle → { , }, AxesLabel → {"", "Sorted errors"}]

Average float error: 0.0231592

Average posit error: 0.00112549

20 40 60 80 100

0.02

0.04

0.06

0.08

Sorted errors

Another iteration does not improve the float result. But look what it does to the posit result; it nails
it!
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rp = b - a.xp;
x1p = linsolverp[a, rp];
xp = xp + x1p

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

The  posit  answer  is  infinitely  accurate.  The  correction  technique  was  of  limited  value  for  floats
because  you  really  need  a  quire  to  do  residual  correction  properly.  Since  it  only  improves  the
answer  slightly,  most  people  never  bother  with  more  than  one  iteration  of  Gaussian  elimination,
and refer to it as a “direct method.” But it is really nothing of the kind; it is a guessing method that
usually progresses toward the solution.

While we’re at it, we can reproduce the original LINPACK benchmark, using 64-bit IEEE floats and
the  same  100-by-100  matrix.  Let’s  see  how  well  that  works,  where  we  display  the  answer  in  6-
point type to get a compact display

setfloatenv[{64, 11}]
xf = linsolverf[a, b]; Style[xf, 6]



9007199254740915

9007199254740992

,

1125899906842643

1125899906842624

, 1,

4503599627370305

4503599627370496

,

9007199254740933

9007199254740992

,

2251799813685211

2251799813685248

,

9007199254740829

9007199254740992

,

9007199254740901

9007199254740992

,

2251799813685219

2251799813685248

,

2251799813685315

2251799813685248

,

4503599627370423

4503599627370496

,

9007199254740973

9007199254740992

,

2251799813685265

2251799813685248

,

4503599627370557

4503599627370496

,

4503599627370609

4503599627370496

,

4503599627370487

4503599627370496

,

2251799813685223

2251799813685248

,

2251799813685361

2251799813685248

,

4503599627370363

4503599627370496

,

2251799813685265

2251799813685248

,

9007199254740805

9007199254740992

,

4503599627370531

4503599627370496

,

4503599627370601

4503599627370496

,

1125899906842629

1125899906842624

,

4503599627370517

4503599627370496

,

4503599627370517

4503599627370496

,

2251799813685221

2251799813685248

,

4503599627370351

4503599627370496

,

4503599627370543

4503599627370496

,

9007199254740991

9007199254740992

,

4503599627370481

4503599627370496

,

1125899906842625

1125899906842624

,

4503599627370471

4503599627370496

,

4503599627370627

4503599627370496

,

2251799813685261

2251799813685248

,

9007199254740715

9007199254740992

,

9007199254740779

9007199254740992

,

9007199254740825

9007199254740992

,

4503599627370549

4503599627370496

,

9007199254740981

9007199254740992

,

2251799813685181

2251799813685248

,

1125899906842641

1125899906842624

,

1125899906842671

1125899906842624

,

281474976710659

281474976710656

,

2251799813685265

2251799813685248

,

562949953421317

562949953421312

,

4503599627370601

4503599627370496

,

9007199254740923

9007199254740992

,

9007199254740951

9007199254740992

,

9007199254740973

9007199254740992

,

9007199254740921

9007199254740992

,

562949953421321

562949953421312

,

2251799813685273

2251799813685248

,

4503599627370441

4503599627370496

,

2251799813685299

2251799813685248

,

4503599627370403

4503599627370496

,

4503599627370401

4503599627370496

,

4503599627370737

4503599627370496

,

1125899906842615

1125899906842624

,

4503599627370601

4503599627370496

,

4503599627370557

4503599627370496

,

9007199254740931

9007199254740992

,

4503599627370519

4503599627370496

,

9007199254740981

9007199254740992

,

2251799813685223

2251799813685248

,

4503599627370411

4503599627370496

,

4503599627370593

4503599627370496

,

9007199254740981

9007199254740992

,

4503599627370535

4503599627370496

,

2251799813685313

2251799813685248

,

9007199254740949

9007199254740992

,

4503599627370531

4503599627370496

,

4503599627370629

4503599627370496

,

9007199254740881

9007199254740992

,

2251799813685255

2251799813685248

,

4503599627370525

4503599627370496

,

4503599627370389

4503599627370496

,

9007199254740935

9007199254740992

,

4503599627370499

4503599627370496

,

9007199254740861

9007199254740992

,

9007199254740901

9007199254740992

,

9007199254740941

9007199254740992

,

1125899906842601

1125899906842624

,

4503599627370625

4503599627370496

,

4503599627370479

4503599627370496

,

2251799813685291

2251799813685248

,

9007199254740753

9007199254740992

,

9007199254740939

9007199254740992

,

1125899906842621

1125899906842624

,

4503599627370491

4503599627370496

,

9007199254740773

9007199254740992

,

2251799813685289

2251799813685248

,

9007199254740983

9007199254740992

,

4503599627370677

4503599627370496

,

2251799813685307

2251799813685248

,

4503599627370485

4503599627370496

,

1125899906842643

1125899906842624

,

4503599627370563

4503599627370496

,

4503599627370497

4503599627370496

,

140737488355325

140737488355328



The answer is close, but misses the correct value, 1,  for every single entry.  To make it  easier to
read, here are the first few entries of the answer vector expressed as decimals, to 54 digits:

Posits4.nb     97



Table[N[xf〚i〛, 54], {i, 1, 10}] // TableForm

0.999999999999991451282710386294638738036155700683593750

1.00000000000001687538997430237941443920135498046875000

1.00000000000000000000000000000000000000000000000000000

0.999999999999957589480459319020155817270278930664062500

0.99999999999999344968415471157641150057315826416015625

0.999999999999983568699235547683201730251312255859375000

0.999999999999981903364698609948391094803810119628906250

0.999999999999989896970475911075482144951820373535156250

0.999999999999987121412914348184131085872650146484375000

1.00000000000002975397705995419528335332870483398437500

The choice seems pretty clear; use 64-bit floats and get the wrong answer for every single one of
the entries in the answer vector,  or  use 16-bit  posits  and get  the correct  answer for  every single
entry. Despite the use of the residual correction, the posits would almost certainly be much faster
time to solution, and would certainly use only 1/4 the storage while getting there.

The  limit  of  using  16-bit  posits  is  that  they  do  run  out  of  dynamic  range  for  larger  n,  when  the
matrices are  random elements  like  this.  If  the  matrix  is  well-posed,  as  often is  true for  the linear
systems  needed  for  actual  physics  simulations,  then  16-bit  posits  should  be  quite  capable  of
producing answers that are reliable to about three decimals of accuracy, and that’s often sufficient
for scientific and engineering purposes.

12.2 Bailey’s Numerical Nightmare, Redux

Recall  this  example  from  The  End  of  Error:  A  2-by-2  linear  system  David  Bailey  came  up  with
whose condition number is about as bad as it gets. The matrix is only one ULP away from being
singular! He posed the problem as

0.25510582 0.52746197
0.80143857 1.65707065

x
y =

0.79981812
2.51270273

The  answer  is  x = -1, y = 2.  Even  though  the  values  are  only  8-  and  9-decimals,  you  get  into
trouble  using  double  precision  floats  that  are  capable  of  about  16  decimals  of  accuracy.  Part  of
Bailey’s point was that  there is rounding error in converting the decimals to binary representation,
which is magnified by the ill-conditioning of the matrix. Here is a way to express the problem that
removes  the  rounding  error  from  converting  decimals  to  binary,  where  we  use  variables

a b
c d

x
y =

u
v  to represent the system:

{{a, b}, {c, d}} = {{25510582, 52746197}, {80143857, 165707065}}  226;
{u, v} = {79981812, 251270273}  226;

All these input values are now exactly expressible with double-precision IEEE floats. Mathematica
can confirm the exact answer:
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LinearSolve[{{a, b}, {c, d}}, {u, v}]

{-1, 2}

However,  that  is  still  not  enough to save floats from terrible rounding errors.  Since the system is
only 2-by-2, we can write the solution in compact form using Cramer’s rule:

setfloatenv[{64, 11}];
det = a d - b c;

{x, y} = (u d - b v)  det, (a v - u c)  det

{0, 2}

Whoops. While the determinate is evaluated correctly at this precision, u d - b v  is not, resulting in
an  infinite  decimal  error  underflow  in  the  value  for  x.  If  we  use  64-bit  posits  (es = 3),  we  get  the
correct value (-1, 2). But posits have accuracy to spare for such a problem; we can turn the nbits
value all the way down to 59 bits and still get the correct result:

setpositenv[{59, 3}];
det = a d - b c;

{x, y} = (u d - b v)  det, (a v - u c)  det

{-1, 2}

Check  the  condition  number  of  this  matrix  to  see  why  “Bailey’s  Numerical  Nightmare”  is  a  good
nickname for the test case:

Eigenvalues[{{a, b}, {c, d}}]
Print["Condition number is ", N[%〚1〛 / %〚2〛]]

191 217647 + 21 82911992118405   134217728,

1  33554432 191217647 + 21 82911992118405 

Condition number is 3.65642 × 1016

Well-posed systems have a condition number of magnitude near 1. Even though the input values
(and the correct answer) all have magnitude near 1, you can still have a terrible condition number
that produces wildly wrong results. That can still  happen with posits, but posits do provide a little
more protection than floats  do!  Here’s  what  happens if  we ask Mathematica to  solve the system
expressed using decimal inputs as Bailey intended:

Posits4.nb     99



{{a, b}, {c, d}} = {{0.25510582, 0.52746197}, {0.80143857, 1.65707065}};
{u, v} = {0.79981812, 2.51270273};
LinearSolve[{{a, b}, {c, d}}, {u, v}]

LinearSolve: Result for LinearSolve of badly conditioned matrix {{0.255106, 0.527462}, {0.801439, 1.65707}}
may contain significant numerical errors.

{0.272534, 1.38454}

12.4 The XSC approach

12.4.1 An interval arithmetic stand-in for a valid environment
In the 1980s, a group of mathematicians at University of Karlsruhe, including Kulisch and S. Rump
and others, developed ways to use quire-type refinement of linear solvers to improve a wide range
of operations, not just solutions to Ax = b. For example, they demonstrated evaluation of polynomi-
als,  rational  functions, and numerical  derivatives to within 0.5 ULP. The key idea is to write such
calculations  as  a  sequence  of  operations  depending  on  +  –  ×  ÷  operations  on  previously-com-
puted values, which can then be rewritten as a sparse system of equations that is lower-triangular.
That in turn can be solved to very high precision using an exact dot product. While languages like
PASCAL-XSC and ACRITH use the approach, the lack of a standard for a quire (and the availabil-
ity  of  fast  hardware  supporting  it)  has  inhibited  their  wide  adoption.  The  posit  environment  can
make use of the techniques developed by the Karlsruhe group.

Much  of  their  approach  depends  on  interval  bounds,  which  makes  us  wish  for  a  complete  valid
environment.  It’s  not  like  a  full  environment  for  valids,  but  for  now  we  can  lean  on  the  built-in
interval arithmetic in Mathematica. We’ll need this later for iterative refinement that uses the quire.
This should be regarded as an unfinished part of the prototype environment, for now. The x2pint
function takes a real value or an interval with real endpoints and returns an interval that has posit
endpoints and encloses the input argument.

x2pint[x_] := Module{e, f, hi, i, lo, p,
pinf = BitShiftLeft[1, nbits - 1], xlo = Min[x], xhi = Max[x], y},

{e, y} = 2es-1, Abs[xlo];
lo = Which(* First, take care of the exception values: *)

0 ≤ xlo < minpos, 0,
xlo < -maxpos y ⩵ ∞, pinf, (* ±∞; 1 followed by all 0 bits *)

-minpos < xlo < 0, Mod[-1, npat], (* -minpos; all 1 bits *)

maxpos < xlo, pinf - 1, (* maxpos; 0 followed by all 1 bits *)

True, If[y ≥ 1, (* Northeast quadrant: *)

p = 1;
i = 2; (* Shift in 1s from the right and scale down. *)

While[y ≥ useed i < nbits, {p, y, i} = {2 p + 1, y / useed, i + 1}];
p = 2 p; i++, (* Else, southeast quadrant: *)

p = 0;
i = 1; (* Shift in 0s from the right and scale up. *)

While[y < 1 i ≤ nbits, {y, i} = {y * useed, i + 1}];
If[i ≥ nbits, p = 2; i = nbits + 1,
p = 1; i++]]; (* Extract exponent bits: *)
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p = 1; i++]]; (* Extract exponent bits: *)

While[e > 1 / 2 i ≤ nbits, p = 2 p;
If[y ≥ 2e, y /= 2e;
p++];

e /= 2; i++];
y--; (* Fraction bits; subtract the hidden bit *)

While[y > 0 i ≤ nbits, y = 2 y; p = 2 p + ⌊y⌋; y -= ⌊y⌋; i++];
p *= 2nbits+1-i;
i++;
(* For low bound, round up if x is negative, down if positive *)

i = BitAnd[p, 1]; p = ⌊p / 2⌋;
p = Which[

i ⩵ 0(y ⩵ 1 y ⩵ 0), p, (* If exact, leave it alone *)

xlo > 0, p, (* inexact and x > 0, so truncate. *)

True, p + 1 (* inexact and x < 0, so round up *)];
Mod[If[xlo < 0, npat - p, p], npat (* Simulate 2's complement *)]

 ;

{e, y} = 2es-1, Abs[xhi];
hi = Which(* First, take care of the exception values: *)

-minpos < xhi ≤ 0, 0,
maxpos < xhi y ⩵ ∞, pinf,
0 < xhi ≤ minpos, 1, (* minpos; all 0 bits except last bit = 1 *)

xhi ≤ -maxpos, pinf + 1, (*-maxpos; 1000…0001 *)

True, If[y ≥ 1, (* Northeast quadrant: *)

p = 1;
i = 2; (* Shift in 1s from the right and scale down. *)

While[y ≥ useed i < nbits, {p, y, i} = {2 p + 1, y / useed, i + 1}];
p = 2 p; i++, (* Else, southeast quadrant: *)

p = 0;
i = 1; (* Shift in 0s from the right and scale up. *)

While[y < 1 i ≤ nbits, {y, i} = {y * useed, i + 1}];
If[i ≥ nbits, p = 2;
i = nbits + 1, p = 1;
i++]];

(* Extract exponent bits: *)

While[e > 1 / 2 i ≤ nbits, p = 2 p;
If[y ≥ 2e, y /= 2e;
p++];

e /= 2; i++];
y--; (* Fraction bits; subtract the hidden bit *)

While[y > 0 i ≤ nbits, y = 2 y; p = 2 p + ⌊y⌋; y -= ⌊y⌋; i++];
p *= 2nbits+1-i;
i++;
(* For high bound, round down if x is negative, up if positive *)

i = BitAnd[p, 1]; p = ⌊p / 2⌋;
p = Which[

i ⩵ 0(y ⩵ 1 y ⩵ 0), p, (* If exact, leave it alone *)

xhi < 0, p, (* inexact and x < 0, so truncate. *)

True, p + 1 (* inexact and x > 0, so round up *)];
Mod[If[xhi < 0, npat - p, p], npat (* Simulate 2's complement *)]

 ;
Interval[{p2x[lo], p2x[hi]}]

;
SetAttributes[x2pint, Listable]

Here’s an example of how it finds a bound on the value of π, using a pair of posits as endpoints of
a closed interval (a subset of what valids can represent):
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Here’s an example of how it finds a bound on the value of π, using a pair of posits as endpoints of
a closed interval (a subset of what valids can represent):

setpositenv[{16, 1}]
x2pint[π]
N[%, 15]

Interval
6433

2048
,
3217

1024


Interval[{3.14111328125000, 3.14160156250000}]

12.4.2 The XSC-style solver for a basic block
Kulisch & Miranker showed that a basic block with only plus-minus-times-divide operations can be
converted to a lower triangular system of equations, and then solved to within 0.5 ULP using the
exact dot product. One of their examples:

Find X = (a + b) ·c -
d
e
.

As  a  linear  algebra  problem,  this  expression  is  equivalent  to  solving  six  linear  equations  in  six
unknowns:

x1 = a
x2 = x1 + b
x3 = c x2

x4 = d
e x5 = x4

x6 = x3 - x5

   which becomes the system  

1
-1 1

c -1
1
-1 e

-1 0 1 1

x1

x2

x3

x4

x5

x6

=

a
b
0
d
0
0

.

and the X  we seek is x6.  The matrix is lower triangular and sparse. Now let’s see if  we can pick
posit  values  in  {16, 1}  that  lead  to  rounding  error,  and  use  Mathematica  to  solve  the  system
exactly as a basis for comparison:
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setpositenv[{16, 1}];
A = {{1, 0, 0, 0, 0, 0}, {-1, 1, 0, 0, 0, 0}, {0, c, -1, 0, 0, 0},

{0, 0, 0, 1, 0, 0}, {0, 0, 0, -1, e, 0}, {0, 0, -1, 0, 1, 1}};
B = {a, b, 0, d, 0, 0};
{a, b, c, d, e} = {32, 3 / 64, 1023 / 32768, 3329 / 256, 13};
xexact = LinearSolve[A, B]
N[xexact, 9]

{0.255106, 0.782568, 0.62718, 1.65707, 0.127467, 0.499713}

{0.255106, 0.782568, 0.62718, 1.65707, 0.127467, 0.499713}

Here are the nearest posits to each of those values:

goal = xexact
N[goal, 8]


1045

4096
,
6411

8192
,
2569

4096
,
6787

4096
,

261

2048
,

8187

16384


{0.25512695, 0.78259277, 0.62719727, 1.6569824, 0.12744141, 0.49969482}

The input values were selected to cause trouble, starting with 32 +
3

64
 which rounds up to 32 1

16
 in

this low-precision environment. The c value is selected to make the product approximately 1, and
then adding a ratio (which also rounds) close to –1 magnifies the relative error. Now contrast the
exact value with the computed value we get if we round after every operation:

(a + b) * c -
d
e

N[%]

3

4096

0.000732422

That’s a lot of rounding error for so few operations. Good! Let’s see if we can fix it. Use the posit
linear solver, and then compute the residual with quire-level precision (with a final rounding to the
nearest posit):
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x = linsolverp[A, B]
res1 = B - A.x
N[res1]


1045

4096
,
6411

8192
,
2569

4096
,
6787

4096
,

2089

16384
,

8187

16384


-
11

524288
, -

1

262144
, -

3

1048576
,

93

1048576
, -

9

16384
, 0

-0.0000209808, -3.8147 × 10-6, -2.86102 × 10-6, 0.0000886917, -0.000549316, 0.

Now solve using the residual as the right-hand side, add it as a correction to the first solution, and
express that solution as posits:

adjust1 = linsolverp[A, res1];
x1 = x + adjust1


1045

4096
,
6411

8192
,
2569

4096
,
6787

4096
,

261

2048
,

8187

16384


Notice that this agrees with all six xi values in goal:

goal - x1

{0, 0, 0, 0, 0, 0}

This is why quires and linear solvers are about a lot more than just A x = b problems; they are the
key to  evaluating basic  block sequences of  +  –  ×  ÷  operations to  within  half  an ULP,  as if  there
were only one rounding. The setup of the sparse lower-triangular matrix and the iterative solution
can be done automatically,  as has been demonstrated since the 1980s with the XSC languages;
S. Rump estimates that it increases the total work by a maximum of a factor of six, usually much
less.  Even  if  the  number  of  operations  goes  up  by  a  factor  of  six,  they  are  using  variables  in
registers  and  the  closest  level  of  cache,  not  main  memory.  If  the  technique  allows  low-precision
arithmetic  to  get  satisfactory  results,  the  savings  of  memory  bandwidth  and  storage  (and  the
corresponding savings of power and energy costs) should be well worth the extra work, especially
if the programmer can specify where to apply the technique and where not to.

12.4.3 Associative Law for Multiplication?

Experiment: See if the quire can get us the associative property of multiplication. Use a really low-
precision posit environment, and a simple case where (u×v)×w ≠ u×(v×w) after rounding.

setpositenv[{8, 0}]
u = 35 / 32; v = 15 / 16; w = 15 / 16;

Here is the correct product, as a fraction and as an exact decimal:
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Here is the correct product, as a fraction and as an exact decimal:

pex = u v w
N[pex, 13]

7875

8192

0.9613037109375

Notice that this is not even expressible with a quire, which stores integer multiples of 1
4096

 for the

{8, 0} posit environment. Here is the nearest posit to the correct product:

pex
N[%]

31

32

0.96875

This trio of numbers breaks the associative law if we round after each multiplication. Here’s what
we get if we group the last two terms:

u (v w)
N[%]

61

64

0.953125

If we instead happen to group the first two terms, we get the best-possible answer (the one within
0.5 ULP of the exact product, pex):

(u v) w

31

32

The incorrect rounding of 61/64 is only very slightly farther away from the true solution, so this is a
sensitive  test  case.  Half  an  ULP  is  0.0078125  for  these  values.  It’s  a  “squeaker”;  the  difference
between the distances to the exact answer pex is only 3/4096:
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Abs[31 / 32. - pex]
Abs[61 / 64. - pex]

0.00744629

0.00817871

This  shows  that  floating-point  multiplication  is  not  associative  in  general,  when  we  round  after
every  multiply.  That  is  true  whether  we  use  floats  or  posits.  (If  we  use  valids,  the  two  ways  to
compute the product will always produce overlapping valids, and the overlap can be considered a
tighter bound on the correct value.)

Can quire-based linear solvers restore multiplicative associativity? Set up the product u ·v ·w  as a
lower triangular system. When there are only multiplies, adds, and subtracts in an expression, it is
always possible to do this with 1s or –1s on the diagonal.

x1 = u      
x2 = x1×v
x3 = x2×w

1 0 0
v -1 0
0 w -1

x1

x2

x3

=

u
0
0

Solving the system exactly produces the product in x3. Here is the exact solution, using Kulisch’s
notations for all variables:

A = {{1, 0, 0}, {v, -1, 0}, {0, w, -1}};
b = {u, 0, 0};
n = Length[b];
xU = LinearSolve[A, b]
NxU, 13


35

32
,
525

512
,
7875

8192


{1.093750000000, 1.025390625000, 0.9613037109375}

Construct an approximate inverse matrix R at posit precision:

R = TableInverse[A]〚i,j〛, {i, 1, n}, {j, 1, n}; MatrixForm[R]

1 0 0
15

16
-1 0

7

8
- 15

16
-1

The refinement matrix is I - R A. Compute it at quire precision and bound with valids (using Mathe-
matica intervals for now, as stand-ins for an actual valid library):
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The refinement matrix is I - R A. Compute it at quire precision and bound with valids (using Mathe-
matica intervals for now, as stand-ins for an actual valid library):

ref = IdentityMatrix[n] - A.R; MatrixForm[ref]
ref = x2pint[ref];
MatrixForm[ref]

0 0 0

0 0 0

- 1

256
0 0

Interval[{0, 0}] Interval[{0, 0}] Interval[{0, 0}]
Interval[{0, 0}] Interval[{0, 0}] Interval[{0, 0}]

Interval- 1

64
, 0 Interval[{0, 0}] Interval[{0, 0}]

We compute R ·b in quire precision, then round to posit as the approximate solution, x˜.

x = R.b


35

32
,
33

32
,
61

64


We calculate  the  residual,  or  “defect”  as  the  Germans  like  to  call  it,  using  quire  precision…  and
again find the nearest posit form of that.

dq = b - A.x

d = dq

0,
3

512
, -

7

512


0,
1

64
, -

1

64


Now we need an interval enclosure around x˜ - xG. Let’s be conservative and give it the entire range
of representable real numbers.

e = Table[Interval[{-maxpos, maxpos}], {i, 1, n}]

{Interval[{-64, 64}], Interval[{-64, 64}], Interval[{-64, 64}]}

This  at  last  sets  up  the  iteration  scheme  specified  by  Kulisch  on  page  31  of  “Arithmetic  of  the
Digital  Computer”.  The provable  bound shrinks  with  each iteration,  tightening the noose until  the
uncertainty is  only one ULP wide.  More work needs to be done to show that  valids can do even
better  than closed intervals.  This  is  an example  where interval-type algorithms are  different  from
conventional  iterative methods;  they need to be crafted carefully  so that  they produce a contrac-
tive  map.  Some  conventional  iterative  methods  do  not  do  this,  and  with  interval  arithmetic,  the
bounds get looser instead of tighter with each iteration!

Notice,  however,  that  we  do  not  require  expertise  from  the  user.  A  compiler  can  automatically
generate the refinement process and produce an ULP-wide bound, then rounding it to the nearest
posit.  A  compiler  directive  should  say  which  code  blocks  should  be  insured  for  high  accuracy  in
this way, so that the program does not run slower because of the refinement of answers that need
not  be  highly  accurate.  The  XSC  environments  do  not  have  this  level  of  programmer  control,
another reason they have not caught on.
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This  at  last  sets  up  the  iteration  scheme  specified  by  Kulisch  on  page  31  of  “Arithmetic  of  the
Digital  Computer”.  The provable  bound shrinks  with  each iteration,  tightening the noose until  the
uncertainty is  only one ULP wide.  More work needs to be done to show that  valids can do even
better  than closed intervals.  This  is  an example  where interval-type algorithms are  different  from
conventional  iterative methods;  they need to be crafted carefully  so that  they produce a contrac-
tive  map.  Some  conventional  iterative  methods  do  not  do  this,  and  with  interval  arithmetic,  the
bounds get looser instead of tighter with each iteration!

Notice,  however,  that  we  do  not  require  expertise  from  the  user.  A  compiler  can  automatically
generate the refinement process and produce an ULP-wide bound, then rounding it to the nearest
posit.  A  compiler  directive  should  say  which  code  blocks  should  be  insured  for  high  accuracy  in
this way, so that the program does not run slower because of the refinement of answers that need
not  be  highly  accurate.  The  XSC  environments  do  not  have  this  level  of  programmer  control,
another reason they have not caught on.

e = x2pint[ref.e + R.d]

Interval[{0, 0}], Interval-
1

64
, -

1

64
, Interval-1,

33

32


e = x2pint[ref.e + R.d]

Interval[{0, 0}], Interval-
1

64
, -

1

64
, Interval0,

1

64


That  last  element  is  one ULP wide,  so we’re done.  We could iterate one more time just  to show
that the enclosure is now stable:

e = x2pint[ref.e + R.d]

Interval[{0, 0}], Interval-
1

64
, -

1

64
, Interval0,

1

64


It’s stable. The corrected answer:

x + e

Interval
35

32
,
35

32
, Interval

65

64
,
65

64
, Interval

61

64
,
31

32


Well, it worked. It found the best interval enclosure of the true product, one ULP wide. In replacing
the  bound  with  a  posit,  we  would  round  to  the  “even”  endpoint  31/32.  This  shows that  the  quire
can restore the associative property of algebra to a posit computing environment, if needed. If we
had used interval  arithmetic  (valids)  to  do the multiplication,  the bound would  be two ULPs wide
after the two multiplications. The XSC approach brings that down to one ULP wide, which is then
rounded uniquely and consistently.

12.4.4 When even the quire cannot rescue an ill-posed system
From Kulisch & Miranker, an example where having a low residual does not mean you are close to
the  answer.  Notice  that  this  is  not  a  lower-triangular  matrix;  lower-triangular  matrices  are  much
better  behaved.  This  is  a  lot  like  Bailey’s  Numerical  Nightmare,  a  deceptively  simple-looking  2-
by-2 system that nonetheless is terribly ill-posed.
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From Kulisch & Miranker, an example where having a low residual does not mean you are close to
the  answer.  Notice  that  this  is  not  a  lower-triangular  matrix;  lower-triangular  matrices  are  much
better  behaved.  This  is  a  lot  like  Bailey’s  Numerical  Nightmare,  a  deceptively  simple-looking  2-
by-2 system that nonetheless is terribly ill-posed.

setpositenv[{16, 1}]
A = {{a11, a12}, {a21, a22}} = 0.780, 0.563, 0.913, 0.659;
b = {b1, b2} = {a11 - a12, a21 - a22};
n = Length[b];
Print[MatrixForm[A], MatrixForm[{X, Y}], " = ", MatrixForm[b]]
3195

4096

1153

2048

7479

8192

5399

8192


X

Y
 =

889

4096

65

256

The exact answer should  be {1, -1},  and exact arithmetic using rational  numbers is capable of  a
true direct solution since there is no rounding:

LinearSolve[A, b]

{1, -1}

To  set  up  the  XSC  tightening-enclosure  iteration,  we  first  find  the  posit  approximation  to  the
inverse matrix.

R = Inverse[A]; MatrixForm[R]


6848 -5824
-9472 8128



Apply that approximate inverse to the right-hand side vector b to get a starting guess (quire preci-
sion):

x = R.b
N[x]


483

64
,
127

16


{7.54688, 7.9375}

Those values didn’t need rounding to the nearest posit, but happened to be already expressible as
posits. Compute the defect using quire precision, and round to the nearest posit:

d = b - A.x; N[d]

{-10.1367, -11.8672}

Notice  that  that’s  a  pretty  large  defect!   The  problem  lies  in  the  refinement  matrix  operator,
ref = I - A ·R:
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Notice  that  that’s  a  pretty  large  defect!   The  problem  lies  in  the  refinement  matrix  operator,
ref = I - A ·R:

ref = IdentityMatrix[n] - A.R; MatrixForm[ref]

- 513

64
- 529

16

- 1201

128
- 1239

32

Unless the spectral  radius  (the ratio  of  the  largest  eigenvalue to  the smallest  eigenvalue)  is  less
than 1, we have no assurance of convergence.

N[Eigenvalues[ref]]

{-46.7315, -0.00290473}

The spectral radius is not less than 1, so we should not have high hopes for residual refinement.
Applying the “refinement” operator will make things worse, that is, the interval bound will be come
looser, not tighter.
Residual correction isn’t working even with the quire. There exist problems so ill-posed that they
cannot be solved this way. The XSC workaround is to detect these rare cases and report them to
the user.

Furthermore, consider two candidate solutions.  One of  them is very close to the correct  solution,
X = 0.999, Y = -1.001 (expressed using the closest posit)

{X, Y} = {0.999, -1.001}; N[{X, Y}]

{0.999023, -1.00098}

Our human intuition says that the defect should be very small for such a close guess:

r = b - A.{X, Y}; N[r]

{0.00131154, 0.00153518}

For the second candidate solution,  instead try  a poorer  guess,  X = 0.341,  Y = -0.087,  and check
the residual:

{X, Y} = {0.341, -0.087}; N[{X, Y}]

{0.341003, -0.0870056}
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r = b - A.{X, Y}; N[r]

{0.0000315011, -0.0000758357}

The second choice  for  the  solution  vector  is  clearly  farther  from the  correct  solution,  yet  gives  a
smaller  residual!  At  least  it  is  possible  to  detect  when  the  refinement  method  will  fail.  Having  a
lucky guess might not help you.

12.4.5 Kulisch polynomial challenge example
Kulisch  gives  the  example  of  a  polynomial  that  is  difficult  to  evaluate  accurately  for  certain  input
values. It has an exact root at 1 2 . If we use a value close to that root, any errors will be magni-

fied.

P[t_] := 8118 t4 - 11482 t3 + t2 + 5741 t - 2030

We should probably write out  the definition of  the polynomial  using Horner’s rule,  the way a pro-
gram would actually evaluate the polynomial.

P[t_] := (((8118 t - 11482) t + 1) t + 5741) t - 2030

Kulisch’s example uses t = 0.707107, and shows that  the polynomial  evaluation is correct  to only
two decimal places. To be fair, we need to find the exact answer using the closest binary represen-
tation of 707107

1000000
 as the input quantity. With the environment set for 32-bit posits:

setpositenv[{32, 2}]; t = 707107 / 1000000
N[t, 27]

94906295

134217728

0.707107000052928924560546875

We can express the exact polynomial of that fraction using exact rational arithmetic and 97 deci-
mals to express the output, though of course only the first few decimals are significant digits:

pex = P[t]; N[pex, 97]

-1.9157388506341908195757433328672682792140480557305329831555007480403673980;

61789572238922119140625 × 10-11

Now look what happens when we rely on “machine precision,” that is, internal 64-bit IEEE floats:
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P[N[t]]

-1.93268 × 10-11

Despite  using  more  than  15  significant  decimals,  only  the  first  two  decimals  are  correct:
-1.9326⋯×10-11. Can we get a better answer with 32-bit posits, using XSC-style refinement
techniques?

Write Horner’s rule for P(t) using five temporary quantities, x1 through x5:

x1 = 8118
x2 = x1 t - 11482
x3 = x2 t + 1
x4 = x3 t + 5741
x5 = x4 t - 2030

   which becomes the system 

1
-t 1

-t 1
-t 1

-t 1

x1

x2

x3

x4

x5

=

8118
-11482

1
5741
-2030

.

The best 32-bit posit representation of the exact value is the following, shown to 10 decimals:

pexp = pex; N[pexp]
colorcodep[x2p[pexp]]

-1.91574 × 10-11

11111111110111010111011111010110→-0000000001000101000100000101010

The  color  coding  shows  that  the  fraction  only  has  20  bits  for  such  a  small-magnitude  value,  for
which an ULP is about one part in about 106. That’s appropriate, since the input value only has six
significant  digits.  Here’s  the  Ax = b  problem setup  and  the  approximate  solution  xG,  expressed  as
exact rational numbers and approximate decimals:

A = {{1, 0, 0, 0, 0}, {-t, 1, 0, 0, 0},
{0, -t, 1, 0, 0}, {0, 0, -t, 1, 0}, {0, 0, 0, -t, 1}};

b = {8118, -11482, 1, 5741, -2030};
n = Length[b];
xU = LinearSolve[A, b];
NxU, 12

8118.00000000, -5741.70537357,

-4059.00006189, 2870.85264302, -1.91573885063 × 10-11

Here is what the approximate inverse looks like, at posit precision:
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R = Inverse[A]; MatrixForm[R]

1 0 0 0 0
94906295

134217728
1 0 0 0

134217811

268435456

94906295

134217728
1 0 0

47453177

134217728

134217811

268435456

94906295

134217728
1 0

67108947

268435456

47453177

134217728

134217811

268435456

94906295

134217728
1

The refinement matrix is I - R A, computed at quire precision but then rounded:

R = Inverse[A]; MatrixForm[R]

1 0 0 0 0
94906295

134217728
1 0 0 0

134217811

268435456

94906295

134217728
1 0 0

47453177

134217728

134217811

268435456

94906295

134217728
1 0

67108947

268435456

47453177

134217728

134217811

268435456

94906295

134217728
1

ref = IdentityMatrix[5] - A.R;
ref = x2pint[ref];
Style[MatrixForm[ref], 5]

Interval0, 0 Interval0, 0 Interval0, 0 Interval0, 0 Interval0, 0

Interval0, 0 Interval0, 0 Interval0, 0 Interval0, 0 Interval0, 0

Interval
365645

1125899906842624
,

1462581

4503599627370496
 Interval0, 0 Interval0, 0 Interval0, 0 Interval0, 0

Interval-
650367

562949953421312
, -

1300733

1125899906842624
 Interval

365645

1125899906842624
,

1462581

4503599627370496
 Interval0, 0 Interval0, 0 Interval0, 0

Interval
1102687

1125899906842624
,

34459

35184372088832
 Interval-

650367

562949953421312
, -

1300733

1125899906842624
 Interval

365645

1125899906842624
,

1462581

4503599627370496
 Interval0, 0 Interval0, 0

We compute R ·b in quire precision, then round to posit as the approximate solution, x˜.

x = R.b

8118, -
23518025

4096
, -

66502657

16384
,
23518025

8192
, -

3561

268435456


We always calculate the “defect” exactly, at quire precision, and round to posit precision:

d = b - A.x

0, -
3443

67108864
,

19472337

549755813888
, -

4812023

274877906944
,

28667951

1099511627776


Now we need an interval enclosure around x˜ - xG as a starting guess. As usual, be ultra-conserva-
tive and use the largest possible starting interval.
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Now we need an interval enclosure around x˜ - xG as a starting guess. As usual, be ultra-conserva-
tive and use the largest possible starting interval.

e = Table[Interval[{-maxpos, maxpos}], {i, 1, n}];

This  at  last  sets  up  the  iteration  scheme  specified  by  Kulisch  on  page  31  of  “Arithmetic  of  the
Digital  Computer”.  We  can  watch  just  what  happens  to  the  last  element  of  e,  since  that’s  the
answer we seek.

e = x2pintref.e + R.d; N[e〚-1〛]

Interval-3.32696 × 1027, 3.32696 × 1027

It has a long way to come down, but it’s shrinking fast.

e = x2pintref.e + R.d; N[e〚-1〛]

Interval-1.41344 × 1017, 1.41344 × 1017

This is looking good. 

e = x2pintref.e + R.d; N[e〚-1〛]

Interval[{0.0000132657, 0.0000132657}]

That looks converged, but do it one more time just to be sure:

e = x2pintref.e + R.d; N[e〚-1〛]

Interval[{0.0000132657, 0.0000132657}]

It has stopped changing. Now apply the correction:

x = x + e; N[x]

Interval[{8118., 8118.}], Interval[{-5741.71, -5741.71}],

Interval[{-4059., -4059.}], Interval[{2870.85, 2870.85}],

Interval-2.00089 × 10-11, -1.90994 × 10-11

That last interval is the bound, and it’s better than you can do with a 32-bit float by far, as we will
see  later.  But  before  we  stop,  let’s  try  using  a  point  in  each  interval  as  a  new  starting  point,
because we lost a lot of precision when correcting the last term. It was so far away from the right
answer, there weren’t many significant digits available to really zoom in on the answer. The beauty
of  the  method  is  that  it  produces  a  rigorous  bound  even  with  a  poor  starting  point  and  a  very
approximate  inverse  to  the  matrix  A.  As  long  as  A R - I  has  a  spectral  radius  less  than  1,  the
enclosure interval will converge to an ULP-wide bound. This has to be one of the supreme achieve-
ments of the interval arithmetic community.
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That last interval is the bound, and it’s better than you can do with a 32-bit float by far, as we will
see  later.  But  before  we  stop,  let’s  try  using  a  point  in  each  interval  as  a  new  starting  point,
because we lost a lot of precision when correcting the last term. It was so far away from the right
answer, there weren’t many significant digits available to really zoom in on the answer. The beauty
of  the  method  is  that  it  produces  a  rigorous  bound  even  with  a  poor  starting  point  and  a  very
approximate  inverse  to  the  matrix  A.  As  long  as  A R - I  has  a  spectral  radius  less  than  1,  the
enclosure interval will converge to an ULP-wide bound. This has to be one of the supreme achieve-
ments of the interval arithmetic community.

x = TableMin[x〚i〛], {i, 1, n}; N[x]

8118., -5741.71, -4059., 2870.85, -2.00089 × 10-11

Calculate an exact residual with this better starting guess for the answer:

d = b - A.x; N[d, 12]

0, 0, 5.09592368303 × 10-14, 5.45955751074 × 10-13, 4.39966165171 × 10-13

That very small correction shows this is much closer to the true answer. But we aren’t simply using
a typical iterative method; we are proving that the answer lies inside an interval. Use the usual all-
encompassing interval enclosure to start, and round d to the nearest posit. (If we do not round d to
the nearest posit d˜, we cannot use the quire to compute R·d exactly).

e = Table[Interval[{-maxpos, maxpos}], {i, 1, n}];
d = d; N[d]

0., 0., 5.09592 × 10-14, 5.45956 × 10-13, 4.39966 × 10-13

With the same refinement operator as before, but this better starting point iterate until things stop
changing.  Display  just  the  last  value  as  a  decimal,  and  when  it  seems  to  be  stable,  check  by
displaying it as a rational number.

e = x2pintref.e + R.d; N[e〚-1〛]

Interval-3.32696 × 1027, 3.32696 × 1027

e = x2pintref.e + R.d; N[e〚-1〛]

Interval-1.41344 × 1017, 1.41344 × 1017

e = x2pintref.e + R.d; N[e〚-1〛]

Interval8.51492 × 10-13, 8.51496 × 10-13
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e = x2pintref.e + R.d; e〚-1〛

Interval
122713

144115188075855872
,

245427

288230376151711744


e = x2pintref.e + R.d; e〚-1〛

Interval
122713

144115188075855872
,

245427

288230376151711744


That’s stable. Add the correction, and look at just the last value, which is the bound on the answer:

x = x + e; bound = x2pint[x〚-1〛]; N[bound, 12]

Interval-1.91573978903 × 10-11, -1.91573701347 × 10-11

We can use color-coded output  to  show that  these posit  bounds are one ULP apart,  so this  is  a
maximum-accuracy result, with six decimals of accuracy.

colorcodep[x2p[bound〚1,1〛]]

colorcodep[x2p[bound〚1,2〛]]

11111111110111010111011111010110→-0000000001000101000100000101010

11111111110111010111011111010111→-0000000001000101000100000101001

That’s pretty spectacular, because 32-bit posits produced an answer correct to six decimals with a
provable  enclosure,  whereas  64-bit  floats  produced  an  answer  correct  to  two  decimals  with  no
guarantee of correctness whatsoever. Score 1 for Dr. Kulisch.

Just for fun, let’s see how awful  the result  would be if  we had used 32-bit  floats.  We convert  the
value of t to the nearest float.

setfloatenv[{32, 8}]; t = 0.707107; N[t, 20]

0.70710700750350952148

The exact value of the polynomial using that value of t should be as follows:

fex = N[P[t], 49]
-1.981290238746664096415517533113013804273714636717 × 10-11

Here  is  the  polynomial  evaluated  with  Horner’s  rule  and  IEEE  standard  rounding  after  every
operation. It’s kind of fun to see the stack of underlines, which tell you exactly where the roundings
happen.
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Here  is  the  polynomial  evaluated  with  Horner’s  rule  and  IEEE  standard  rounding  after  every
operation. It’s kind of fun to see the stack of underlines, which tell you exactly where the roundings
happen.

(((8118 t - 11482) t + 1) t + 5741) t - 2030

0

Whoops.  Infinite  decimal  error.  Float  arithmetic  thinks  the  value  is  a  root  of  the  polynomial!  But
wait, we can at least use fused multiply-adds, which cuts the number of roundings from eight down
to four:

(((8118 t - 11482) t + 1) t + 5741) t - 2030

-
895409

17179869184

That looks a lot bigger than the correct value we calculated, fex. Let’s see just how much bigger it
is:

N[% / fex]

2.63059 × 106

The answer is now off by a factor of 2.6 million. Well, at least it got the sign right!

The  combination  of  posit  arithmetic,  quire  accumulation,  and  the  shrinking  interval  enclosure
technique allow 32-bit posits to dramatically outperform 64-bit floats. The 32-bit posits produced a
tight, provable bound with six-decimal accuracy, whereas the 64-bit  floats produced a guess with
no indication of how many decimal in the guess are correct. And only the first two decimals were
correct.

12.5 Solving a real PDE problem (Sandia’s data set)

12.5.1 Insights regarding Ax = b and the quire data type
If A and b are expressed in posits (or floats) and A is nonsingular, there is exactly one answer for
x: a vector of rational numbers.

There  is  exactly  one  x˜  expressible  with  posits  that  is  closer  to  x  than  any  other.  (Rounding  is
unique).

Matrix A times x is a vector of quires, with no rounding error! (512 bits per quire, if we use 32-bit
posits.)

Gaussian  elimination  with  exact  dot  products  as  the  innermost  loop  means  On2  roundings  per

element instead of On3. On a petascale problem for which n ≈ 106, that means about three more
decimals of accuracy in the answer.
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If A and b are expressed in posits (or floats) and A is nonsingular, there is exactly one answer for
x: a vector of rational numbers.

There  is  exactly  one  x˜  expressible  with  posits  that  is  closer  to  x  than  any  other.  (Rounding  is
unique).

Matrix A times x is a vector of quires, with no rounding error! (512 bits per quire, if we use 32-bit
posits.)

Gaussian  elimination  with  exact  dot  products  as  the  innermost  loop  means  On2  roundings  per

element instead of On3. On a petascale problem for which n ≈ 106, that means about three more
decimals of accuracy in the answer.

Let's see if  we can import a small  test file from Sandia based on a real PDE. Start  with their  81-
variable  system,  apparently  generated  by  a  9-by-9  Poisson  problem using  a  5-point  stencil.  The
first  two  numbers  are  the  row-column  coordinates  within  the  matrix,  and  the  long  decimal  is  a
double-precision  component  value.  Apologies  for  this  long table  of  numbers  in  the middle  of  this
document…ugh!

sandia81A = {

1, 1, 0.400000000000000133226762955018784851,
2, 1, -0.099999999999999977795539507496869192,
10, 1, -0.100000000000000061062266354383609723,
1, 2, -0.099999999999999977795539507496869192,
2, 2, 0.400000000000000133226762955018784851,
3, 2, -0.099999999999999977795539507496869192,
11, 2, -0.100000000000000088817841970012523234,
2, 3, -0.099999999999999977795539507496869192,
3, 3, 0.416666666666666796192686206268263049,
4, 3, -0.108333333333333364789652364379435312,
12, 3, -0.108333333333333392545227980008348823,
3, 4, -0.108333333333333364789652364379435312,
4, 4, 0.425000000000000155431223447521915659,
5, 4, -0.100000000000000033306690738754696213,
13, 4, -0.116666666666666710150401797818631167,
4, 5, -0.100000000000000033306690738754696213,
5, 5, 0.400000000000000188737914186276611872,
6, 5, -0.100000000000000033306690738754696213,
14, 5, -0.100000000000000033306690738754696213,
5, 6, -0.100000000000000033306690738754696213,
6, 6, 0.400000000000000133226762955018784851,
7, 6, -0.100000000000000033306690738754696213,
15, 6, -0.100000000000000033306690738754696213,
6, 7, -0.100000000000000033306690738754696213,
7, 7, 0.400000000000000133226762955018784851,
8, 7, -0.099999999999999977795539507496869192,
16, 7, -0.100000000000000061062266354383609723,
7, 8, -0.099999999999999977795539507496869192,
8, 8, 0.400000000000000133226762955018784851,
9, 8, -0.099999999999999977795539507496869192,
17, 8, -0.100000000000000088817841970012523234,
8, 9, -0.099999999999999977795539507496869192,
9, 9, 0.400000000000000133226762955018784851,
18, 9, -0.100000000000000061062266354383609723,
1, 10, -0.100000000000000061062266354383609723,
10, 10, 0.400000000000000133226762955018784851,
11, 10, -0.099999999999999977795539507496869192,
19, 10, -0.100000000000000033306690738754696213,
2, 11, -0.100000000000000088817841970012523234,
10, 11, -0.099999999999999977795539507496869192,
11, 11, 0.416666666666666796192686206268263049,
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11, 11, 0.416666666666666796192686206268263049,
12, 11, -0.108333333333333309278501133121608291,
20, 11, -0.108333333333333392545227980008348823,
3, 12, -0.108333333333333392545227980008348823,
11, 12, -0.108333333333333309278501133121608291,
12, 12, 0.516666666666666829499376945022959262,
13, 12, -0.150000000000000077715611723760957830,
21, 12, -0.150000000000000022204460492503130808,
4, 13, -0.116666666666666710150401797818631167,
12, 13, -0.150000000000000077715611723760957830,
13, 13, 0.583333333333333592385372412536526099,
14, 13, -0.125000000000000055511151231257827021,
22, 13, -0.191666666666666679619268620626826305,
5, 14, -0.100000000000000033306690738754696213,
13, 14, -0.125000000000000055511151231257827021,
14, 14, 0.450000000000000177635683940025046468,
15, 14, -0.100000000000000047184478546569152968,
23, 14, -0.125000000000000000000000000000000000,
6, 15, -0.100000000000000033306690738754696213,
14, 15, -0.100000000000000047184478546569152968,
15, 15, 0.400000000000000133226762955018784851,
16, 15, -0.100000000000000047184478546569152968,
24, 15, -0.100000000000000005551115123125782702,
7, 16, -0.100000000000000061062266354383609723,
15, 16, -0.100000000000000047184478546569152968,
16, 16, 0.400000000000000133226762955018784851,
17, 16, -0.099999999999999977795539507496869192,
25, 16, -0.100000000000000033306690738754696213,
8, 17, -0.100000000000000088817841970012523234,
16, 17, -0.099999999999999977795539507496869192,
17, 17, 0.400000000000000077715611723760957830,
18, 17, -0.099999999999999977795539507496869192,
26, 17, -0.100000000000000061062266354383609723,
9, 18, -0.100000000000000061062266354383609723,
17, 18, -0.099999999999999977795539507496869192,
18, 18, 0.400000000000000133226762955018784851,
27, 18, -0.100000000000000033306690738754696213,
10, 19, -0.100000000000000033306690738754696213,
19, 19, 0.416666666666666796192686206268263049,
20, 19, -0.108333333333333309278501133121608291,
28, 19, -0.108333333333333364789652364379435312,
11, 20, -0.108333333333333392545227980008348823,
19, 20, -0.108333333333333309278501133121608291,
20, 20, 0.516666666666666718477074482507305220,
21, 20, -0.149999999999999966693309261245303787,
29, 20, -0.150000000000000077715611723760957830,
12, 21, -0.150000000000000022204460492503130808,
20, 21, -0.149999999999999966693309261245303787,
21, 21, 0.733333333333333392545227980008348823,
22, 21, -0.216666666666666757334880344387784135,
30, 21, -0.216666666666666729579304728758870624,
13, 22, -0.191666666666666679619268620626826305,
21, 22, -0.216666666666666757334880344387784135,
22, 22, 0.908333333333333658998753890045918524,
23, 22, -0.225000000000000088817841970012523234,
31, 22, ,
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31, 22, -0.275000000000000022204460492503130808,
14, 23, -0.125000000000000000000000000000000000,
22, 23, -0.225000000000000088817841970012523234,
23, 23, 0.700000000000000288657986402540700510,
24, 23, -0.125000000000000055511151231257827021,
32, 23, -0.225000000000000005551115123125782702,
15, 24, -0.100000000000000005551115123125782702,
23, 24, -0.125000000000000055511151231257827021,
24, 24, 0.450000000000000122124532708767219447,
25, 24, -0.100000000000000061062266354383609723,
33, 24, -0.125000000000000000000000000000000000,
16, 25, -0.100000000000000033306690738754696213,
24, 25, -0.100000000000000061062266354383609723,
25, 25, 0.400000000000000133226762955018784851,
26, 25, -0.099999999999999977795539507496869192,
34, 25, -0.100000000000000033306690738754696213,
17, 26, -0.100000000000000061062266354383609723,
25, 26, -0.099999999999999977795539507496869192,
26, 26, 0.400000000000000077715611723760957830,
27, 26, -0.099999999999999977795539507496869192,
35, 26, -0.100000000000000061062266354383609723,
18, 27, -0.100000000000000033306690738754696213,
26, 27, -0.099999999999999977795539507496869192,
27, 27, 0.400000000000000133226762955018784851,
36, 27, -0.100000000000000033306690738754696213,
19, 28, -0.108333333333333364789652364379435312,
28, 28, 0.425000000000000099920072216264088638,
29, 28, -0.116666666666666640761462758746347390,
37, 28, -0.100000000000000033306690738754696213,
20, 29, -0.150000000000000077715611723760957830,
28, 29, -0.116666666666666640761462758746347390,
29, 29, 0.583333333333333370340767487505218014,
30, 29, -0.191666666666666596352541773740085773,
38, 29, -0.125000000000000083266726846886740532,
21, 30, -0.216666666666666729579304728758870624,
29, 30, -0.191666666666666596352541773740085773,
30, 30, 0.908333333333333436954148965014610440,
31, 30, -0.275000000000000133226762955018784851,
39, 30, -0.225000000000000033306690738754696213,
22, 31, -0.275000000000000022204460492503130808,
30, 31, -0.275000000000000133226762955018784851,
31, 31, 1.100000000000000310862446895043831319,
32, 31, -0.275000000000000133226762955018784851,
40, 31, -0.275000000000000022204460492503130808,
23, 32, -0.225000000000000005551115123125782702,
31, 32, -0.275000000000000133226762955018784851,
32, 32, 0.908333333333333547976451427530264482,
33, 32, -0.191666666666666762885995467513566837,
41, 32, -0.216666666666666674068153497501043603,
24, 33, -0.125000000000000000000000000000000000,
32, 33, -0.191666666666666762885995467513566837,
33, 33, 0.583333333333333481363069950020872056,
34, 33, -0.116666666666666724028189605633087922,
42, 33, -0.150000000000000022204460492503130808,
25, 34, -0.100000000000000033306690738754696213,
33, 34, ,
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33, 34, -0.116666666666666724028189605633087922,
34, 34, 0.425000000000000099920072216264088638,
35, 34, -0.099999999999999977795539507496869192,
43, 34, -0.108333333333333364789652364379435312,
26, 35, -0.100000000000000061062266354383609723,
34, 35, -0.099999999999999977795539507496869192,
35, 35, 0.400000000000000077715611723760957830,
36, 35, -0.099999999999999977795539507496869192,
44, 35, -0.100000000000000061062266354383609723,
27, 36, -0.100000000000000033306690738754696213,
35, 36, -0.099999999999999977795539507496869192,
36, 36, 0.400000000000000133226762955018784851,
45, 36, -0.100000000000000033306690738754696213,
28, 37, -0.100000000000000033306690738754696213,
37, 37, 0.400000000000000133226762955018784851,
38, 37, -0.099999999999999977795539507496869192,
46, 37, -0.100000000000000033306690738754696213,
29, 38, -0.125000000000000083266726846886740532,
37, 38, -0.099999999999999977795539507496869192,
38, 38, 0.450000000000000122124532708767219447,
39, 38, -0.124999999999999986122212192185543245,
47, 38, -0.100000000000000061062266354383609723,
30, 39, -0.225000000000000033306690738754696213,
38, 39, -0.124999999999999986122212192185543245,
39, 39, 0.700000000000000177635683940025046468,
40, 39, -0.225000000000000088817841970012523234,
48, 39, -0.125000000000000055511151231257827021,
31, 40, -0.275000000000000022204460492503130808,
39, 40, -0.225000000000000088817841970012523234,
40, 40, 0.908333333333333658998753890045918524,
41, 40, -0.216666666666666785090455960016697645,
49, 40, -0.191666666666666651863693004997912794,
32, 41, -0.216666666666666674068153497501043603,
40, 41, -0.216666666666666785090455960016697645,
41, 41, 0.733333333333333503567530442524002865,
42, 41, -0.150000000000000077715611723760957830,
50, 41, -0.150000000000000022204460492503130808,
33, 42, -0.150000000000000022204460492503130808,
41, 42, -0.150000000000000077715611723760957830,
42, 42, 0.516666666666666829499376945022959262,
43, 42, -0.108333333333333392545227980008348823,
51, 42, -0.108333333333333337034076748750521801,
34, 43, -0.108333333333333364789652364379435312,
42, 43, -0.108333333333333392545227980008348823,
43, 43, 0.416666666666666796192686206268263049,
44, 43, -0.099999999999999977795539507496869192,
52, 43, -0.100000000000000033306690738754696213,
35, 44, -0.100000000000000061062266354383609723,
43, 44, -0.099999999999999977795539507496869192,
44, 44, 0.400000000000000077715611723760957830,
45, 44, -0.099999999999999977795539507496869192,
53, 44, -0.100000000000000061062266354383609723,
36, 45, -0.100000000000000033306690738754696213,
44, 45, -0.099999999999999977795539507496869192,
45, 45, 0.400000000000000133226762955018784851,
54, 45, ,
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54, 45, -0.100000000000000033306690738754696213,
37, 46, -0.100000000000000033306690738754696213,
46, 46, 0.400000000000000133226762955018784851,
47, 46, -0.099999999999999977795539507496869192,
55, 46, -0.100000000000000033306690738754696213,
38, 47, -0.100000000000000061062266354383609723,
46, 47, -0.099999999999999977795539507496869192,
47, 47, 0.400000000000000133226762955018784851,
48, 47, -0.099999999999999977795539507496869192,
56, 47, -0.100000000000000061062266354383609723,
39, 48, -0.125000000000000055511151231257827021,
47, 48, -0.099999999999999977795539507496869192,
48, 48, 0.450000000000000122124532708767219447,
49, 48, -0.125000000000000055511151231257827021,
57, 48, -0.100000000000000033306690738754696213,
40, 49, -0.191666666666666651863693004997912794,
48, 49, -0.125000000000000055511151231257827021,
49, 49, 0.583333333333333370340767487505218014,
50, 49, -0.150000000000000077715611723760957830,
58, 49, -0.116666666666666668517038374375260901,
41, 50, -0.150000000000000022204460492503130808,
49, 50, -0.150000000000000077715611723760957830,
50, 50, 0.516666666666666829499376945022959262,
51, 50, -0.108333333333333392545227980008348823,
59, 50, -0.108333333333333337034076748750521801,
42, 51, -0.108333333333333337034076748750521801,
50, 51, -0.108333333333333392545227980008348823,
51, 51, 0.416666666666666796192686206268263049,
52, 51, -0.100000000000000061062266354383609723,
60, 51, -0.100000000000000005551115123125782702,
43, 52, -0.100000000000000033306690738754696213,
51, 52, -0.100000000000000061062266354383609723,
52, 52, 0.400000000000000133226762955018784851,
53, 52, -0.099999999999999977795539507496869192,
61, 52, -0.100000000000000033306690738754696213,
44, 53, -0.100000000000000061062266354383609723,
52, 53, -0.099999999999999977795539507496869192,
53, 53, 0.400000000000000077715611723760957830,
54, 53, -0.099999999999999977795539507496869192,
62, 53, -0.100000000000000061062266354383609723,
45, 54, -0.100000000000000033306690738754696213,
53, 54, -0.099999999999999977795539507496869192,
54, 54, 0.400000000000000133226762955018784851,
63, 54, -0.100000000000000033306690738754696213,
46, 55, -0.100000000000000033306690738754696213,
55, 55, 0.400000000000000133226762955018784851,
56, 55, -0.099999999999999977795539507496869192,
64, 55, -0.100000000000000033306690738754696213,
47, 56, -0.100000000000000061062266354383609723,
55, 56, -0.099999999999999977795539507496869192,
56, 56, 0.400000000000000077715611723760957830,
57, 56, -0.099999999999999977795539507496869192,
65, 56, -0.100000000000000061062266354383609723,
48, 57, -0.100000000000000033306690738754696213,
56, 57, -0.099999999999999977795539507496869192,
57, 57, 0.400000000000000133226762955018784851,
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57, 57, 0.400000000000000133226762955018784851,
58, 57, -0.100000000000000061062266354383609723,
66, 57, -0.100000000000000033306690738754696213,
49, 58, -0.116666666666666668517038374375260901,
57, 58, -0.100000000000000061062266354383609723,
58, 58, 0.425000000000000155431223447521915659,
59, 58, -0.108333333333333392545227980008348823,
67, 58, -0.100000000000000005551115123125782702,
50, 59, -0.108333333333333337034076748750521801,
58, 59, -0.108333333333333392545227980008348823,
59, 59, 0.416666666666666796192686206268263049,
60, 59, -0.100000000000000061062266354383609723,
68, 59, -0.100000000000000005551115123125782702,
51, 60, -0.100000000000000005551115123125782702,
59, 60, -0.100000000000000061062266354383609723,
60, 60, 0.400000000000000133226762955018784851,
61, 60, -0.100000000000000061062266354383609723,
69, 60, -0.100000000000000005551115123125782702,
52, 61, -0.100000000000000033306690738754696213,
60, 61, -0.100000000000000061062266354383609723,
61, 61, 0.400000000000000133226762955018784851,
62, 61, -0.099999999999999977795539507496869192,
70, 61, -0.100000000000000033306690738754696213,
53, 62, -0.100000000000000061062266354383609723,
61, 62, -0.099999999999999977795539507496869192,
62, 62, 0.400000000000000077715611723760957830,
63, 62, -0.099999999999999977795539507496869192,
71, 62, -0.100000000000000061062266354383609723,
54, 63, -0.100000000000000033306690738754696213,
62, 63, -0.099999999999999977795539507496869192,
63, 63, 0.400000000000000133226762955018784851,
72, 63, -0.100000000000000033306690738754696213,
55, 64, -0.100000000000000033306690738754696213,
64, 64, 0.400000000000000077715611723760957830,
65, 64, -0.100000000000000005551115123125782702,
73, 64, -0.100000000000000005551115123125782702,
56, 65, -0.100000000000000061062266354383609723,
64, 65, -0.100000000000000005551115123125782702,
65, 65, 0.400000000000000077715611723760957830,
66, 65, -0.100000000000000005551115123125782702,
74, 65, -0.100000000000000019428902930940239457,
57, 66, -0.100000000000000033306690738754696213,
65, 66, -0.100000000000000005551115123125782702,
66, 66, 0.400000000000000133226762955018784851,
67, 66, -0.100000000000000074940054162198066479,
75, 66, -0.100000000000000005551115123125782702,
58, 67, -0.100000000000000005551115123125782702,
66, 67, -0.100000000000000074940054162198066479,
67, 67, 0.400000000000000133226762955018784851,
68, 67, -0.100000000000000074940054162198066479,
76, 67, -0.099999999999999977795539507496869192,
59, 68, -0.100000000000000005551115123125782702,
67, 68, -0.100000000000000074940054162198066479,
68, 68, 0.400000000000000133226762955018784851,
69, 68, -0.100000000000000074940054162198066479,
77, 68, ,
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77, 68, -0.099999999999999977795539507496869192,
60, 69, -0.100000000000000005551115123125782702,
68, 69, -0.100000000000000074940054162198066479,
69, 69, 0.400000000000000133226762955018784851,
70, 69, -0.100000000000000074940054162198066479,
78, 69, -0.099999999999999977795539507496869192,
61, 70, -0.100000000000000033306690738754696213,
69, 70, -0.100000000000000074940054162198066479,
70, 70, 0.400000000000000077715611723760957830,
71, 70, -0.100000000000000005551115123125782702,
79, 70, -0.100000000000000005551115123125782702,
62, 71, -0.100000000000000061062266354383609723,
70, 71, -0.100000000000000005551115123125782702,
71, 71, 0.400000000000000077715611723760957830,
72, 71, -0.100000000000000005551115123125782702,
80, 71, -0.100000000000000019428902930940239457,
63, 72, -0.100000000000000033306690738754696213,
71, 72, -0.100000000000000005551115123125782702,
72, 72, 0.400000000000000133226762955018784851,
81, 72, -0.100000000000000005551115123125782702,
64, 73, -0.100000000000000005551115123125782702,
73, 73, 0.400000000000000133226762955018784851,
74, 73, -0.100000000000000005551115123125782702,
65, 74, -0.100000000000000019428902930940239457,
73, 74, -0.100000000000000005551115123125782702,
74, 74, 0.400000000000000077715611723760957830,
75, 74, -0.100000000000000005551115123125782702,
66, 75, -0.100000000000000005551115123125782702,
74, 75, -0.100000000000000005551115123125782702,
75, 75, 0.400000000000000133226762955018784851,
76, 75, -0.100000000000000061062266354383609723,
67, 76, -0.099999999999999977795539507496869192,
75, 76, -0.100000000000000061062266354383609723,
76, 76, 0.400000000000000077715611723760957830,
77, 76, -0.100000000000000061062266354383609723,
68, 77, -0.099999999999999977795539507496869192,
76, 77, -0.100000000000000061062266354383609723,
77, 77, 0.400000000000000133226762955018784851,
78, 77, -0.100000000000000061062266354383609723,
69, 78, -0.099999999999999977795539507496869192,
77, 78, -0.100000000000000061062266354383609723,
78, 78, 0.400000000000000133226762955018784851,
79, 78, -0.100000000000000061062266354383609723,
70, 79, -0.100000000000000005551115123125782702,
78, 79, -0.100000000000000061062266354383609723,
79, 79, 0.400000000000000133226762955018784851,
80, 79, -0.100000000000000005551115123125782702,
71, 80, -0.100000000000000019428902930940239457,
79, 80, -0.100000000000000005551115123125782702,
80, 80, 0.400000000000000077715611723760957830,
81, 80, -0.100000000000000005551115123125782702,
72, 81, -0.100000000000000005551115123125782702,
80, 81, -0.100000000000000005551115123125782702,
81, 81, 0.400000000000000133226762955018784851};

While this clearly should be stored and solved as a sparse matrix, for purposes of rapid prototyp-
ing we simply populate a dense matrix so that we can use the dense matrix solver developed in a
previous  section.  As  is  typical  with  a  partial  differential  equation  solved  with  a  nearest-neighbor
stencil (finite difference) approximation, the system has a main diagonal, adjacent diagonals, and
diagonals that are 9 elements away, the width or height of the square domain. The plot shows the
matrix with the values of coefficients in the z dimension.
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While this clearly should be stored and solved as a sparse matrix, for purposes of rapid prototyp-
ing we simply populate a dense matrix so that we can use the dense matrix solver developed in a
previous  section.  As  is  typical  with  a  partial  differential  equation  solved  with  a  nearest-neighbor
stencil (finite difference) approximation, the system has a main diagonal, adjacent diagonals, and
diagonals that are 9 elements away, the width or height of the square domain. The plot shows the
matrix with the values of coefficients in the z dimension.

A = Table[0, {i, 1, 81}, {j, 1, 81}];
Fori = 1, i < Length[sandia81A],

i += 3, Asandia81Ai,sandia81Ai+1
= sandia81A〚i+2〛;

ListPlot3D[A, ViewPoint → {1, 2, 2}]

Sandia  also  supplied  their  right-hand  side  vector  b,  which  does  not  have  the  obvious  decimal
approximation quality of the matrix input values.

sandia81b = {

1, 1, 0.568282626667702128742121203686110675,
2, 1, -0.194365394908625366277021839778171852,
3, 1, -0.688407046958027679650626851071137935,
4, 1, -0.231093558206384303010949565759801771,
5, 1, 0.545583373405327809457787680003093556,
6, 1, 0.568282626667701129541399041045224294,
7, 1, -0.194365394908622035607947964308550581,
8, 1, -0.688407046958026569427602225914597511,
9, 1, -0.231093558206384108721920256357407197,
10, 1, -0.942199858426785996634578168595908210,
11, 1, -0.919500605164410789171824944787658751,
12, 1, 0.373917231759081980513315102143678814,
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12, 1, 0.373917231759081980513315102143678814,
13, 1, 1.150594163370796563228282138879876584,
14, 1, 0.337189068461317520419839866008260287,
15, 1, -0.942199858426788106058324956393335015,
16, 1, -0.919500605164409567926497857115464285,
17, 1, 0.373917231759085422204691440128954127,
18, 1, 1.150594163370796341183677213848568499,
19, 1, -1.150594163370794564826837813598103821,
20, 1, -0.373917231759076207353587051329668611,
21, 1, 0.919500605164412787573269270069431514,
22, 1, 0.942199858426784109255436305829789490,
23, 1, -0.337189068461320018421645272610476241,
24, 1, -1.150594163370794786871442738629411906,
25, 1, -0.373917231759078649844241226674057543,
26, 1, 0.919500605164413675751688970194663852,
27, 1, 0.942199858426784331300041230861097574,
28, 1, 0.231093558206386162634515812897006981,
29, 1, 0.688407046958029344985163788805948570,
30, 1, 0.194365394908621258451830726698972285,
31, 1, -0.568282626667704571232775379030499607,
32, 1, -0.545583373405327365368577829940477386,
33, 1, 0.231093558206387883480203981889644638,
34, 1, 0.688407046958026791472207150945905596,
35, 1, 0.194365394908618399627542316920880694,
36, 1, -0.568282626667704349188170453999191523,
37, 1, 1.293417836923493435818954822025261819,
38, 1, 0.799376184874084239062597134761745110,
39, 1, -0.799376184874088790976998097903560847,
40, 1, -1.293417836923494323997374522150494158,
41, 1, 0.000000000000001110223024625156540424,
42, 1, 1.293417836923495212175794222275726497,
43, 1, 0.799376184874085238263319297402631491,
44, 1, -0.799376184874091344489954735763603821,
45, 1, -1.293417836923494101952769597119186074,
46, 1, 0.568282626667702239764423666201764718,
47, 1, -0.194365394908625976899685383614269085,
48, 1, -0.688407046958028567829046551196370274,
49, 1, -0.231093558206383831166164100068272091,
50, 1, 0.545583373405328919680812305159633979,
51, 1, 0.568282626667701462608306428592186421,
52, 1, -0.194365394908622868275216433175955899,
53, 1, -0.688407046958027457606021926039829850,
54, 1, -0.231093558206383942188466562583926134,
55, 1, -0.942199858426786107656880631111562252,
56, 1, -0.919500605164411677350244644912891090,
57, 1, 0.373917231759081591935256483338889666,
58, 1, 1.150594163370797229362096913973800838,
59, 1, 0.337189068461318353087108334875665605,
60, 1, -0.942199858426788106058324956393335015,
61, 1, -0.919500605164410345082615094725042582,
62, 1, 0.373917231759084978115481590066337958,
63, 1, 1.150594163370796785272887063911184669,
64, 1, -1.150594163370795897094467363785952330,
65, 1, -0.373917231759078705355392457931884564,
66, 1, 0.919500605164412787573269270069431514,
67, 1, 0.942199858426786995835300331236794591,
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67, 1, 0.942199858426786995835300331236794591,
68, 1, -0.337189068461318464109410797391319647,
69, 1, -1.150594163370796785272887063911184669,
70, 1, -0.373917231759081203357197864534100518,
71, 1, 0.919500605164414008818596357741625980,
72, 1, 0.942199858426786995835300331236794591,
73, 1, 0.231093558206380805808421996516699437,
74, 1, 0.688407046958026569427602225914597511,
75, 1, 0.194365394908624922187811989715555683,
76, 1, -0.568282626667699353184559640794759616,
77, 1, -0.545583373405327809457787680003093556,
78, 1, 0.231093558206382471142958934251510072,
79, 1, 0.688407046958023904892343125538900495,
80, 1, 0.194365394908622035607947964308550581,
81, 1, -0.568282626667699242162257178279105574};

b = Table[sandia81b〚i+2〛, {i, 1, Length[sandia81b], 3}];

Clearly,  the  matrix  is  constructed  from exact  rationals.  Sandia  gave  the  OK to  reconstruct  those
original  rationals,  which  will  allow us  to  scale  both  A and b  to  improve the  statement  of  A.  If  we
multiply A by 120, all  the values become very close to integers.  With tiny 3-point  type, the entire
matrix fits in a page width once we reconstruct the original intention of the matrix description.
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A = Round[120 A];
b = 120 b;
Style[MatrixForm[A], 3]

48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -12 50 -13 0 0 0 0 0 0 0 -13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -13 51 -12 0 0 0 0 0 0 0 -14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-12 0 0 0 0 0 0 0 0 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 50 -13 0 0 0 0 0 0 0 -13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -13 0 0 0 0 0 0 0 -13 62 -18 0 0 0 0 0 0 0 -18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 -14 0 0 0 0 0 0 0 -18 70 -15 0 0 0 0 0 0 0 -23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -12 0 0 0 0 0 0 0 -15 54 -12 0 0 0 0 0 0 0 -15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 50 -13 0 0 0 0 0 0 0 -13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 -13 0 0 0 0 0 0 0 -13 62 -18 0 0 0 0 0 0 0 -18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 -18 0 0 0 0 0 0 0 -18 88 -26 0 0 0 0 0 0 0 -26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 -23 0 0 0 0 0 0 0 -26 109 -27 0 0 0 0 0 0 0 -33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 -15 0 0 0 0 0 0 0 -27 84 -15 0 0 0 0 0 0 0 -27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -15 54 -12 0 0 0 0 0 0 0 -15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -13 0 0 0 0 0 0 0 0 51 -14 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -18 0 0 0 0 0 0 0 -14 70 -23 0 0 0 0 0 0 0 -15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -26 0 0 0 0 0 0 0 -23 109 -33 0 0 0 0 0 0 0 -27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -33 0 0 0 0 0 0 0 -33 132 -33 0 0 0 0 0 0 0 -33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -27 0 0 0 0 0 0 0 -33 109 -23 0 0 0 0 0 0 0 -26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -15 0 0 0 0 0 0 0 -23 70 -14 0 0 0 0 0 0 0 -18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -14 51 -12 0 0 0 0 0 0 0 -13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -15 0 0 0 0 0 0 0 -12 54 -15 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -27 0 0 0 0 0 0 0 -15 84 -27 0 0 0 0 0 0 0 -15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -33 0 0 0 0 0 0 0 -27 109 -26 0 0 0 0 0 0 0 -23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -26 0 0 0 0 0 0 0 -26 88 -18 0 0 0 0 0 0 0 -18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -18 0 0 0 0 0 0 0 -18 62 -13 0 0 0 0 0 0 0 -13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -13 0 0 0 0 0 0 0 -13 50 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -15 0 0 0 0 0 0 0 -12 54 -15 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -23 0 0 0 0 0 0 0 -15 70 -18 0 0 0 0 0 0 0 -14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -18 0 0 0 0 0 0 0 -18 62 -13 0 0 0 0 0 0 0 -13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -13 0 0 0 0 0 0 0 -13 50 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -14 0 0 0 0 0 0 0 -12 51 -13 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -13 0 0 0 0 0 0 0 -13 50 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 48 -12 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12

Here  is  the  “correct  answer”  as  supplied  by  Sandia  using  conventional  double-precision  floating
point. We would expect that to have almost 15 decimals of accuracy, since this matrix appears to
be diagonally dominant and well-conditioned.

sandia81x = {

1, 1, -0.104455895784591870634194776812364580,
2, 1, -1.861189570032811380073667351098265499,
3, 1, -1.722463578045537291316691153042484075,
4, 1, 0.335928566686036933486292355155455880,
5, 1, 1.862960898807013876421478926204144955,
6, 1, 0.549298777343198207923080644832225516,
7, 1, -1.656877198658314620516307513753417879,
8, 1, -1.714481606938342839185906996135599911,
9, 1, 0.068312196999079990988867905343795428,
10, 1, -4.239460279782576002105543011566624045,
11, 1, -3.674184857214861654739479490672238171,
12, 1, 1.111759246627821884345621583634056151,
13, 1, 3.207148543904415394223406110540963709,
14, 1, 1.110782517145542547254422061087097973,
15, 1, -3.691714857452915499180789993260987103,
16, 1, ,
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16, 1, -3.518672015951896714369695473578758538,
17, 1, 1.614709043486125095157035502779763192,
18, 1, 4.298665976998501392358775774482637644,
19, 1, -3.757201781862992806537704382208175957,
20, 1, -1.124172480722375633277465567516628653,
21, 1, 2.027042297107821688939566229237243533,
22, 1, 1.958812797335875321991238706686999649,
23, 1, -0.442840862954280378716021004947833717,
24, 1, -3.486270124080625976148439804092049599,
25, 1, -1.145798999538387707985975794144906104,
26, 1, 3.654151502245384541822659230092540383,
27, 1, 4.005701033800839638843171996995806694,
28, 1, 1.207613547548265664488553738920018077,
29, 1, 1.960702164798509672394288827490527183,
30, 1, 0.666690577258767569368558270070934668,
31, 1, -0.426187910195240993171950094620115124,
32, 1, -0.518206507290501772189372786669991910,
33, 1, 0.967032808823422351807153063418809325,
34, 1, 2.506766957224376035640034388052299619,
35, 1, 0.946988879588824383759515512792859226,
36, 1, -1.352011928308372468165998725453391671,
37, 1, 4.604238066436249887658505031140521169,
38, 1, 2.842329174087169896267823787638917565,
39, 1, -1.273689738761294876212559756822884083,
40, 1, -1.745566229293452176207779302785638720,
41, 1, 0.490947894124782457936362334294244647,
42, 1, 3.837729653367927706852924529812298715,
43, 1, 2.621810099949757333348543397733010352,
44, 1, -2.964604961892273848889090004377067089,
45, 1, -4.677911359946111069518792646704241633,
46, 1, 1.432831174874628743509674677625298500,
47, 1, -0.666284164331339634479434153035981581,
48, 1, -1.638006058495278249864668396185152233,
49, 1, 0.027504355373328018968814845379711187,
50, 1, 1.832354004085601673068595118820667267,
51, 1, 1.723224163505964856568652976420708001,
52, 1, -0.978152798532918699159210973448352888,
53, 1, -2.755545618420651710067659223568625748,
54, 1, -1.460850180348866933499607512203510851,
55, 1, -3.889455469283416011450071891886182129,
56, 1, -3.358636998705621046212854707846418023,
57, 1, 1.737059099917829918524603272089734674,
58, 1, 4.385162424181196172412455780431628227,
59, 1, 1.261683756009564838507230888353660703,
60, 1, -3.667163415777232149395103988354094326,
61, 1, -3.558445890080517592934938875259831548,
62, 1, 1.265495936671723109512299743073526770,
63, 1, 3.900991839035131025781311109312810004,
64, 1, -4.210017469034814219241980026708915830,
65, 1, -1.420861409481443571323211472190450877,
66, 1, 3.820544715100204324897958940709941089,
67, 1, 3.995027085531709598598126831348054111,
68, 1, -1.183354416085125260238442024274263531,
69, 1, -4.673117108276066744565468979999423027,
70, 1, -1.658957231039541735384545972920022905,
71, 1, 3.735811098562083376606324236490763724,
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71, 1, 3.735811098562083376606324236490763724,
72, 1, 4.293379966109708512078668718459084630,
73, 1, -0.023811363666440366754217805578264233,
74, 1, 1.803836432305244708018676647043321282,
75, 1, 1.775948032788597474862513081461656839,
76, 1, -0.464242965337303747919150964662549086,
77, 1, -1.945120712992527423068622738355770707,
78, 1, -0.677051736494404976518524108541896567,
79, 1, 1.599095293227147385195507922617252916,
80, 1, 1.848319670862301089542256704589817673,
81, 1, 0.114718342573754350510739641322288662};

xSandia = Table[sandia81x〚i+2〛, {i, 1, Length[sandia81x], 3}];

Start by using Mathematica’s built-in solver.

xMathematica = LinearSolve[A, b]

{-0.1044558957845920573040, -1.86118957003281196319, -1.72246357804553828948,
0.335928566686036934373, 1.86296089880701384199, 0.549298777343197910959,

-1.65687719865831647889, -1.71448160693834490957, 0.0683121969990787677097,

-4.23946027978257755345, -3.67418485721486384321, 1.11175924662782080735,

3.20714854390441654812, 1.11078251714554242806, -3.69171485745291701468,
-3.51867201595189856087, 1.61470904348612376716, 4.29866597699850106763,

-3.75720178186299434693, -1.12417248072237644273, 2.02704229710782123626,

1.95881279733587577159, -0.442840862954281432328, -3.48627012408062877627,
-1.14579899953838883781, 3.65415150224538324940, 4.00570103380083832382,

1.20761354754826575611, 1.96070216479850998068, 0.666690577258767909891,

-0.426187910195241457073, -0.518206507290503285732, 0.967032808823420814715,

2.50676695722437523496, 0.946988879588822986907, -1.35201192830837433473,
4.60423806643625006884, 2.84232917408717138038, -1.27368973876129490559,
-1.74556622929345323775, 0.490947894124781296819, 3.83772965336792582994,

2.62181009994975544700, -2.96460496189227619827, -4.67791135994611515779,
1.43283117487462878067, -0.666284164331340091597, -1.63800605849527893376,
0.0275043553733275122839, 1.83235400408560142027, 1.72322416350596285971,

-0.978152798532921308813, -2.75554561842065462432, -1.46085018034886907862,
-3.88945546928341725220, -3.35863699870562182469, 1.73705909991782980962,
4.38516242418119775068, 1.26168375600956476576, -3.66716341577723592285,
-3.55844589008052023490, 1.26549593667172266450, 3.90099183903513288952,

-4.21001746903481488823, -1.42086140948144299107, 3.82054471510020632690,

3.99502708553171107656, -1.18335441608512685254, -4.67311710827607002138,
-1.65895723103954292163, 3.73581109856208284656, 4.29337996610971011945,
-0.0238113636664403387097, 1.80383643230524547531, 1.77594803278859953674,

-0.464242965337302877141, -1.94512071299252859001, -0.677051736494406535791,
1.59909529322714775680, 1.84831967086230143571, 0.114718342573754783384}

Compute the residual to check to see if this an accurate answer:
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b - A.xMathematica

0. × 10-20, 0. × 10-19, 0. × 10-19, 0. × 10-20, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19,

0. × 10-20, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19,

0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19,

0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19,

0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19,

0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19,

0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19,

0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19,

0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19,

0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-20, 0. × 10-19,

0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-20

That looks like an accurate answer all right! Maybe we can make a 3D plot of it.

ans2D = TablexMathematica〚8 i+j+1〛, {i, 0, 8}, {j, 0, 8};
ListPlot3D[ans2D, ColorFunction → "Rainbow"]

Let’s attempt the problem with mere 16-bit posits and see what happens.
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xposit = linsolverp[A, b]; N[xposit, 3]

{-0.104, -1.86, -1.72, 0.336, 1.86, 0.549, -1.66, -1.71, 0.0683, -4.24,
-3.67, 1.11, 3.21, 1.11, -3.69, -3.52, 1.61, 4.30, -3.76, -1.12, 2.03,

1.96, -0.443, -3.49, -1.15, 3.65, 4.01, 1.21, 1.96, 0.667, -0.426,
-0.518, 0.967, 2.51, 0.947, -1.35, 4.60, 2.84, -1.27, -1.75, 0.491,

3.84, 2.62, -2.96, -4.68, 1.43, -0.666, -1.64, 0.0275, 1.83, 1.72,

-0.978, -2.76, -1.46, -3.89, -3.36, 1.74, 4.39, 1.26, -3.67, -3.56,
1.27, 3.90, -4.21, -1.42, 3.82, 4.00, -1.18, -4.67, -1.66, 3.74,

4.29, -0.0238, 1.80, 1.78, -0.464, -1.95, -0.677, 1.60, 1.85, 0.115}

Here’s the residual:

res1 = b - A.xposit; N[res1, 4]

-7.760 × 10-8, 1.954 × 10-7, -6.711 × 10-7, -5.065 × 10-8, -2.789 × 10-7, -9.717 × 10-7,

8.363 × 10-8, 3.854 × 10-8, -4.809 × 10-7, 4.502 × 10-9, 1.537 × 10-7, -5.900 × 10-7,

-6.337 × 10-6, -1.665 × 10-6, 6.080 × 10-7, -2.879 × 10-6, 1.615 × 10-6, -1.357 × 10-6,

1.580 × 10-6, -1.645 × 10-6, -2.195 × 10-6, -7.384 × 10-7, -5.032 × 10-7,

-2.913 × 10-6, -9.544 × 10-8, 2.298 × 10-6, -7.868 × 10-7, 1.256 × 10-6, 2.819 × 10-6,

1.695 × 10-8, 8.823 × 10-7, -6.859 × 10-7, 2.481 × 10-6, 1.288 × 10-6, 9.893 × 10-7,

8.376 × 10-7, -1.551 × 10-7, -3.911 × 10-6, 7.724 × 10-8, -1.542 × 10-6, -1.319 × 10-6,

-3.277 × 10-6, -2.309 × 10-6, 5.355 × 10-7, 1.317 × 10-6, -1.016 × 10-6,

7.095 × 10-7, 1.173 × 10-6, 4.541 × 10-7, -5.658 × 10-7, 1.442 × 10-6, 6.201 × 10-7,

6.867 × 10-7, 1.128 × 10-6, -1.538 × 10-6, 3.872 × 10-6, 1.849 × 10-7, -2.187 × 10-6,

-1.572 × 10-6, -3.755 × 10-7, 1.368 × 10-6, 9.545 × 10-8, -5.743 × 10-7, 3.368 × 10-7,

-5.425 × 10-7, -6.082 × 10-7, -8.762 × 10-7, 1.115 × 10-7, -3.538 × 10-6,

-4.208 × 10-6, -4.453 × 10-6, 1.370 × 10-6, 8.976 × 10-8, 9.086 × 10-7, -1.693 × 10-6,

7.760 × 10-8, -1.263 × 10-6, 2.127 × 10-7, 3.414 × 10-7, 4.640 × 10-7, 3.289 × 10-8

If we use that to amend the answer, we get a result that matches the one supplied by Sandia, to
the precision of 16-bit posits:

132     Posits4.nb



xposit = xposit + linsolverp[A, res1];
N[xposit, 3]
NxSandia, 3
ans2Dp = Tablexposit〚8 i+j+1〛, {i, 0, 8}, {j, 0, 8};
ListPlot3D[ans2Dp, ColorFunction → "Rainbow"]

{-0.104, -1.86, -1.72, 0.336, 1.86, 0.549, -1.66, -1.71, 0.0683, -4.24,
-3.67, 1.11, 3.21, 1.11, -3.69, -3.52, 1.61, 4.30, -3.76, -1.12, 2.03,

1.96, -0.443, -3.49, -1.15, 3.65, 4.01, 1.21, 1.96, 0.667, -0.426,
-0.518, 0.967, 2.51, 0.947, -1.35, 4.60, 2.84, -1.27, -1.75, 0.491,

3.84, 2.62, -2.96, -4.68, 1.43, -0.666, -1.64, 0.0275, 1.83, 1.72,

-0.978, -2.76, -1.46, -3.89, -3.36, 1.74, 4.39, 1.26, -3.67, -3.56,
1.27, 3.90, -4.21, -1.42, 3.82, 4.00, -1.18, -4.67, -1.66, 3.74,

4.29, -0.0238, 1.80, 1.78, -0.464, -1.95, -0.677, 1.60, 1.85, 0.115}

{-0.104, -1.86, -1.72, 0.336, 1.86, 0.549, -1.66, -1.71, 0.0683, -4.24,
-3.67, 1.11, 3.21, 1.11, -3.69, -3.52, 1.61, 4.30, -3.76, -1.12, 2.03,

1.96, -0.443, -3.49, -1.15, 3.65, 4.01, 1.21, 1.96, 0.667, -0.426,
-0.518, 0.967, 2.51, 0.947, -1.35, 4.60, 2.84, -1.27, -1.75, 0.491,

3.84, 2.62, -2.96, -4.68, 1.43, -0.666, -1.64, 0.0275, 1.83, 1.72,

-0.978, -2.76, -1.46, -3.89, -3.36, 1.74, 4.39, 1.26, -3.67, -3.56,
1.27, 3.90, -4.21, -1.42, 3.82, 4.00, -1.18, -4.67, -1.66, 3.74,

4.29, -0.0238, 1.80, 1.78, -0.464, -1.95, -0.677, 1.60, 1.85, 0.115}

Any discrepancy in the answer is far too small  to see. With the residual correction method, there
appears  to  be  no  reason to  use posit  precision  higher  than 16-bit,  which  would  obviously  permit
the solution of much larger problems than if  we have to use 64-bit  data for everything. The quire
allows 16-bit posits to do the work of 64-bit floats.

12.6 The Time Complexity of Unum Linear Solvers

The A and b  inputs to A x = b  problems can be approximate in real applications. There is a theo-
rem from interval arithmetic that says that finding the exact mathematical description of the entire
set  of  x  values  that  solves  the  linear  equations  with  interval  bounds  on  the  inputs  is  NP-hard.
There  is  an  easy  way  to  understand  why  this  is  true:  Every  row  of  an  exact  matrix  specifies  a
hyperplane in n-space, and the solution is the intersection of n hyperplanes. For example, a 2-by-2
system of linear equations simply represents the intersection of two lines.
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The A and b  inputs to A x = b  problems can be approximate in real applications. There is a theo-
rem from interval arithmetic that says that finding the exact mathematical description of the entire
set  of  x  values  that  solves  the  linear  equations  with  interval  bounds  on  the  inputs  is  NP-hard.
There  is  an  easy  way  to  understand  why  this  is  true:  Every  row  of  an  exact  matrix  specifies  a
hyperplane in n-space, and the solution is the intersection of n hyperplanes. For example, a 2-by-2
system of linear equations simply represents the intersection of two lines.
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When the equations are specified in a number system, whether floats or posits, the exact intersec-
tion  point  has  coordinates  that  in  general  are  not  floats  or  posits,  though  they  are  rational  num-
bers.  It  would  be  coincidence  if  the  denominators  were  powers  of  2  such  that  they  land  in  the
numerical  vocabulary.  There  is  a  unique  closest  point  to  the  answer,  found  simply  by  rounding
each element of the answer vector.

If  the  matrix  coefficients  are  intervals  instead  of  exact  points,  then  a  single  row  represents  the
intersection  of  n  "hyperslabs,"  regions  in  n-space  bounded  by  slabs.  The  only  way  to  find  that
intersection  is  to  examine  every  possible  combination  of  minimum  and  maximum  values  for  the
bounds,  or  2n  hyperplanes.  A  rigorous  bound  means  finding  the  hyperplane  with  minimum  and
maximum of  each  of  the  n2  matrix  elements  and  n  right-hand-side  elements,  a  total  of  2 n2 + n
cases.  Even  when  n  is  as  small  as  2,  the  exact  geometrical  intersection  representing  the  result
can be laborious to compute, as the following figure indicates.
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What about simply finding a particular solution x that seems to solve A x = b, and then perturbing x
to  find other  solutions that  work,  iterating until  we have found them all?  This  is  one of  the ubox-
based methods, computing with multidimensional vectors that are either exact or an open interval
one  ULP  wide  for  each  component,  or  ubox.  In  the  figure  below,  the  black  dot  is  a  first  guess
produced  by  whatever  solver  you  prefer  (and  checked  to  see  that  it  really  does  solve  the  equa-
tions after rounding). That is an exact ubox in all  dimensions, and the seed of an exploration. By
testing the neighbor points to see if they also satisfy A x = b (where “=” means interval intersection
with  the  right-hand  side  vector),  we  can  “paint”  the  interior  of  the  complex  shape  to  find  all  the
uboxes  that  make  up  the  solution  set,  shown  in  light  green  below.  The  red  border  represents  a
ubox that provably does not satisfy A x = b. That is, the exact matrix A times the ubox x results in
intervals that do not intersect all components of b. 

134     Posits4.nb



What about simply finding a particular solution x that seems to solve A x = b, and then perturbing x
to  find other  solutions that  work,  iterating until  we have found them all?  This  is  one of  the ubox-
based methods, computing with multidimensional vectors that are either exact or an open interval
one  ULP  wide  for  each  component,  or  ubox.  In  the  figure  below,  the  black  dot  is  a  first  guess
produced  by  whatever  solver  you  prefer  (and  checked  to  see  that  it  really  does  solve  the  equa-
tions after rounding). That is an exact ubox in all  dimensions, and the seed of an exploration. By
testing the neighbor points to see if they also satisfy A x = b (where “=” means interval intersection
with  the  right-hand  side  vector),  we  can  “paint”  the  interior  of  the  complex  shape  to  find  all  the
uboxes  that  make  up  the  solution  set,  shown  in  light  green  below.  The  red  border  represents  a
ubox that provably does not satisfy A x = b. That is, the exact matrix A times the ubox x results in
intervals that do not intersect all components of b. 

While this approach has the advantage that it is easily done on a massively parallel computer, and
it  is  much  simpler  to  program than  to  intersect  hyperplanes  with  computational  geometry,  notice
that  in  perturbing  the  x  value  by  an  ULP  in  each  component  means  3n  perturbations  in  each
dimension, since each component can go down by an ULP, stay the same, or go up by an ULP. It
works up to some value of n, but not a very large n. Like, for LINPACK with n = 100, having to test
3100  input  vectors (uboxes) is  clearly intractable.  It  doesn't  matter  whether the matrix  is  dense or
sparse. At first, it looks like this is an impasse to getting reasonable time complexity for ubox-type
solvers.

The LINPACK example leads to an insight,  however:  In  Section 12.1,  we perturbed the A matrix
such  that  the  exact  answer  matched  a  preconceived  solution  of  all  1  values  for  the  xi.  That's  a
form of reverse error analysis: The approximate solution to a problem can be viewed as the exact
answer to a different problem, and if the different problem is only slightly  different, then we might
accept the answer. This argument dates back to classic 1950s papers by Wilkinson on numerical
analysis, who created existence proofs for when some other problem is within a distance from the
problem originally  posed. But  reverse error  analysis does not  actually  construct  the altered prob-
lem; it only states that it exists under certain conditions.

With  unum  arithmetic,  we  can  explicitly  construct  the  altered  problem  for  reverse  error
analysis. Furthermore, this allows us to make the time complexity of perfect, bounded solutions
as easy as it is for all current numerical methods for solving  A x = b.

The original random matrix A for the LINPACK benchmark was altered so that the solution vector
was expressible as an exact point in n-space using the posit vocabulary. Every perturbation of that
solution  vector  fails  to  solve  the  linear  system!  So  we’re  done.  There  is  only  one  “ubox”  that
solves the system, and it  is exact in all  dimensions and exactly 1 in every component. There are
no  ULP-wide  ranges.  This  cannot  be  achieved  with  traditional  interval  arithmetic,  incidentally;
traditional  interval  arithmetic  uses  closed  intervals  of  the  form  [a, b]  where  a ≤ b,  and  all  3n - 1
neighbors of the exact point will also yield a vector that touches b in every component, so they still
create  intractiable  time  complexity.  With  unum  arithmetic,  valids  are  open  intervals,  and  do  not
include  the  endpoint  that  satisfies  A x = b.  That  means  any  open-interval  neighbor  of  the  exact
solution is part of that red boundary in the diagram above. The iterative method is On3 since the

original  Gaussian  elimination  (LU  factorization)  is  On3  and  the  iterations  are  On2  since  they

depend only on evaluating the matrix-vector product using the quire and backsolving with U-1 and
L-1  (the triangular matrices formed by Gaussian elimination), all of which require only On2) work.

Hence, the time complexity of solving LINPACK is On3 for an n-by-n system, even if the iterative
method is used to obtain a perfect, single exact solution. That result appears to be new.

However,  for  real  problems,  we do not  generally  have the option of  tweaking matrix  entries.  The
Sandia test data is a good example of that. Remember that after scaling by 120, the matrix was all
integers:
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The original random matrix A for the LINPACK benchmark was altered so that the solution vector
was expressible as an exact point in n-space using the posit vocabulary. Every perturbation of that
solution  vector  fails  to  solve  the  linear  system!  So  we’re  done.  There  is  only  one  “ubox”  that
solves the system, and it  is exact in all  dimensions and exactly 1 in every component. There are
no  ULP-wide  ranges.  This  cannot  be  achieved  with  traditional  interval  arithmetic,  incidentally;
traditional  interval  arithmetic  uses  closed  intervals  of  the  form  [a, b]  where  a ≤ b,  and  all  3n - 1
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create  intractiable  time  complexity.  With  unum  arithmetic,  valids  are  open  intervals,  and  do  not
include  the  endpoint  that  satisfies  A x = b.  That  means  any  open-interval  neighbor  of  the  exact
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original  Gaussian  elimination  (LU  factorization)  is  On3  and  the  iterations  are  On2  since  they

depend only on evaluating the matrix-vector product using the quire and backsolving with U-1 and
L-1  (the triangular matrices formed by Gaussian elimination), all of which require only On2) work.

Hence, the time complexity of solving LINPACK is On3 for an n-by-n system, even if the iterative
method is used to obtain a perfect, single exact solution. That result appears to be new.

However,  for  real  problems,  we do not  generally  have the option of  tweaking matrix  entries.  The
Sandia test data is a good example of that. Remember that after scaling by 120, the matrix was all
integers:

48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -12 50 -13 0 0 0 0 0 0 0 -13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -13 51 -12 0 0 0 0 0 0 0 -14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-12 0 0 0 0 0 0 0 0 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 50 -13 0 0 0 0 0 0 0 -13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -13 0 0 0 0 0 0 0 -13 62 -18 0 0 0 0 0 0 0 -18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 -14 0 0 0 0 0 0 0 -18 70 -15 0 0 0 0 0 0 0 -23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -12 0 0 0 0 0 0 0 -15 54 -12 0 0 0 0 0 0 0 -15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 50 -13 0 0 0 0 0 0 0 -13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 -13 0 0 0 0 0 0 0 -13 62 -18 0 0 0 0 0 0 0 -18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 -18 0 0 0 0 0 0 0 -18 88 -26 0 0 0 0 0 0 0 -26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 -23 0 0 0 0 0 0 0 -26 109 -27 0 0 0 0 0 0 0 -33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 -15 0 0 0 0 0 0 0 -27 84 -15 0 0 0 0 0 0 0 -27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -15 54 -12 0 0 0 0 0 0 0 -15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -13 0 0 0 0 0 0 0 0 51 -14 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -18 0 0 0 0 0 0 0 -14 70 -23 0 0 0 0 0 0 0 -15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -26 0 0 0 0 0 0 0 -23 109 -33 0 0 0 0 0 0 0 -27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -33 0 0 0 0 0 0 0 -33 132 -33 0 0 0 0 0 0 0 -33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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That’s because it results from expressing stencil operators like
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xi, j = xi-1, j + xi+1, j + xi, j-1 + xi, j4

We should  regard the matrix  A as  exact  an “untweakable”  except  in  the case of  LINPACK.  That
would seem to dash the argument of constructing the reverse-error-analysis problem.

Or does it?

Remember,  Type III  unums have the quire data type.  When you try  to solve  A x = b  you find an
approximate  x,  no  matter  whether  you  are  using  Gaussian  elimination  or  Conjugate  Gradient  or
Successive  Over-Relaxation,  or  whatever  your  favorite  method  is.  Call  that  x˜,  a  vector  of  posit
elements that we hope result in A x˜ being close to b.

Then using exact quire dot products, we can compute b
˜
= A x˜. Exactly. The answer is not only x˜,

but also the explicitly-constructed problem that reverse error analysis requires:

A x = b
˜

 is a problem close to the original problem, A x = b, 
and the solution is exactly x = x˜.

There  is  no  exponential  complexity  to  bounding  the  solution.  The  complexity  is  whatever  the
traditional matrix solver method has for complexity, and then the perturbed version of the original
problem becomes part of the solution.  That is, both x˜  the altered b

˜
 are computed and treated as

output for the problem. The user can then decide if b
˜

 is sufficiently close to the requested b. This
is a new paradigm for the solution of A x = b problems, and it is made possible only because of the
quire data type. I

Sections on linear solvers were supported in part by the  DARPA TRADES Program, Contract #HR0011-17-9-0007. 
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