
Copyright © 2017 John L. Gustafson

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sub-license, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

This copyright and permission notice shall be included in all copies or substantial portions of the software.

THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY,
WHETHER IN AN ACTION OR CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Posit Arithmetic
John L. Gustafson
10 October 2017

1 Overview
Unums are for expressing real numbers and ranges of real numbers. There are two modes of
operation, selectable by the user: posit mode and valid mode.

In posit mode, a unum behaves much like a floating-point number of fixed size, rounding to the
nearest expressible value if the result of a calculation is not expressible exactly; however, the posit
representation offers more accuracy and a larger dynamic range than floats with the same number
of bits, as well as many other advantages. We can refer to these simply as posits for short, just as
we refer to IEEE 754 Standard floating-point numbers as floats.

In valid mode, a unum represents a range of real numbers and can be used to rigorously bound
answers much like interval arithmetic does, but with a number of improvements over traditional
interval arithmetic. Valids will only be mentioned in passing here, and described in detail in a
separate document.

This document focuses on the details of posit mode, which can be thought of as “beating floats at
their own game.” It introduces a type of unum, Type III, that combines many of the advantages of
Type I and Type II unums, but is less radical and is designed as a “drop-in” replacement for an
IEEE 754 Standard float with no changes needed to source code at the application level. The
following table may help clarify the terminology.

Unum
Date

Intro-
duced

IEEE 754
Compati-

bility
Advantages Disadvantages

Type I March
2015

Yes;
perfect

superset

Most bit-efficient
rigorous-bound
representation

Variable width
management needed;

inherits IEEE 754 dis-
advantages, such as

redundant representations

Type II January
2016

No;
complete
redesign

Maximum infor-
mation per bit

(can customize to a
particular workload);

perfect reciprocals
(+ – × ÷ equally easy);

extremely fast via
ROM table lookup;

allows decimal
representations

Table look-up
limits precision to
~20 bits or less;

exact dot product
is usually expensive

and impractical

Type III February
2017

Similar;
conversion

possible

Hardware-friendly;

posit form is a drop-
in replacement

for IEEE floats (less
radical change);

Faster, more accurate,
lower cost than float

Too new to have
vendor support

from vendors yet;

perfect reciprocals
only for 2n, 0, and ±∞

Type III posits use a fixed number of bits, though that number is very flexible, from as few as two
bits up to many thousands. They are designed for simple hardware and software implementation.
They make use of the same type of low-level circuit constructs that IEEE 754 floats use (integer
adds, integer multiplies, shifts, etc.), and take less chip area since they are simpler than IEEE
floats in many ways. Early FPGA experiments show markedly reduced latency for posits, com-
pared to floats of the same precision.

As with all unum types, there is an h-layer of human-readable values, a u-layer that represents
values with unums, and a g-layer that performs mathematical operations exactly and temporarily,
for return to the u-layer. Here, the h-layer looks very much like standard decimal input and output,
though we are more careful about communicating the difference between exact and rounded
values. The u-layer is posit-format numbers, which look very much like floats to a programmer.
The g-layer represents temporary (scratch) values in a quire, which does exact operations that
obey the distributive and associative laws of algebra and allow posits to achieve astonishingly high
accuracy with fewer bits than floats. It's a lot to explain at once, but let's start with the u-layer since
it is the closest cousin to floating-point arithmetic.

2 Posits4.nb

Type III posits use a fixed number of bits, though that number is very flexible, from as few as two
bits up to many thousands. They are designed for simple hardware and software implementation.
They make use of the same type of low-level circuit constructs that IEEE 754 floats use (integer
adds, integer multiplies, shifts, etc.), and take less chip area since they are simpler than IEEE
floats in many ways. Early FPGA experiments show markedly reduced latency for posits, com-
pared to floats of the same precision.

As with all unum types, there is an h-layer of human-readable values, a u-layer that represents
values with unums, and a g-layer that performs mathematical operations exactly and temporarily,
for return to the u-layer. Here, the h-layer looks very much like standard decimal input and output,
though we are more careful about communicating the difference between exact and rounded
values. The u-layer is posit-format numbers, which look very much like floats to a programmer.
The g-layer represents temporary (scratch) values in a quire, which does exact operations that
obey the distributive and associative laws of algebra and allow posits to achieve astonishingly high
accuracy with fewer bits than floats. It's a lot to explain at once, but let's start with the u-layer since
it is the closest cousin to floating-point arithmetic.

1.1 Brief description of the format for posit mode, Type III unums

A posit for Type III unums is designed to be hardware-friendly, and looks like the following:

s

sign
bit

regime
bits

r r r r ⋯ r

exponent
bits, if any

e1 e2 e3 ⋯ ees

fraction
bits, if any

f1 f2 f3 f4 f5 f6 ⋯

nbits

The boundary between regions is only shown after the sign bit, because the other boundaries vary
with the size of the regime. The regime is the sequence of identical bits r, terminated by the
opposite bit r or by the end of the posit. This way of representing integers is sometimes referred to
as “unary arithmetic” but it is actually a bit more sophisticated. The most primitive way to record
integers is with marks, where the number of marks is the number represented. Think of Roman
numerals,

1 = I, 2 =II, 3 =III, but then it breaks down and uses a different system for 4 = IV.
Or in Chinese and Japanese,

1 = , 2 = , 3 =㆔, but then the system breaks down and uses a different system for 4 =㆕.
The situation we see this system going beyond 3 is tally marks, the way countless cartoons depict
prisoners tracking how many days they’ve been in prison. But how can tally marks record both
positive, zero, and negative integers? We can imagine early attempts to notate the concept:

Posits4.nb 3

But we have the ability to use two kinds of "tick mark": zero and one. This means we can express
both positive and negative integers by repeating the mark. Like, negative integers by repeating 0
bits and zero or positive integers by repeating 1 bits.

The number of exponent bits is es, but the number of those bits can be less than es if they are
crowded off the end of the unum by the regime bits. For people used to IEEE floats, this is usually
the part where confusion sets in. “Wait, exactly where are the exponent bits, and how many are
there?” They do not work the same way as the exponent field of a float. They move around, and
they can be clipped off. For now, think of the regime bits and exponent bits as together serving to
represent an integer k, and the scaling of the number is 2k.

The fraction bits are whatever bit locations are not used by the sign, regime, and exponent bits.
They work exactly like the fraction bits for normalized floats. That's the main thing that makes
Type III posits hardware-friendly. Just as with normalized (binary) floats, the representation boils
down to

(-1)sign×2some integer power×(1 plus a binary fraction)

Hardware designers will be happy to hear that there are no “subnormal” posits like there are with
floats, that there is only one rounding mode, and there are only two exception values (0 and ±∞)
that do not work like the above formula.

The reason for introducing regime bits is that they automatically and economically create tapered
accuracy, where values with small exponents have more accuracy and very large or very small
numbers have less accuracy. (IEEE floats have a crude form of tapered accuracy called gradual
underflow for small-magnitude numbers, but they have no equivalent for large-magnitude num-
bers.) The idea of tapered accuracy was first proposed by Morris in 1971 and a full implementation
was created in 1989, but it used a separate field to indicate the number of bits in the exponent.
Not only was that scheme wasteful of bits, it led to a plethora of bit patterns that all meant the
same number and a hopelessly complicated mess when comparing x < y and x = y. This does not
happen with Type III posits: every bit string has a unique meaning, and comparisons are the same
as comparing signed integers.

The posit environment is set by specifying two numbers: nbits, the total number of bits in the posit,
and es, the maximum size of the exponent bit field. Again, the bit fields represent a numerical
value similarly to how the bit fields in floats work, except:

4 Posits4.nb

Hardware designers will be happy to hear that there are no “subnormal” posits like there are with
floats, that there is only one rounding mode, and there are only two exception values (0 and ±∞)
that do not work like the above formula.

The reason for introducing regime bits is that they automatically and economically create tapered
accuracy, where values with small exponents have more accuracy and very large or very small
numbers have less accuracy. (IEEE floats have a crude form of tapered accuracy called gradual
underflow for small-magnitude numbers, but they have no equivalent for large-magnitude num-
bers.) The idea of tapered accuracy was first proposed by Morris in 1971 and a full implementation
was created in 1989, but it used a separate field to indicate the number of bits in the exponent.
Not only was that scheme wasteful of bits, it led to a plethora of bit patterns that all meant the
same number and a hopelessly complicated mess when comparing x < y and x = y. This does not
happen with Type III posits: every bit string has a unique meaning, and comparisons are the same
as comparing signed integers.

The posit environment is set by specifying two numbers: nbits, the total number of bits in the posit,
and es, the maximum size of the exponent bit field. Again, the bit fields represent a numerical
value similarly to how the bit fields in floats work, except:

◼ If the sign bit is 1, the unum bit string is negated (treating it as a standard 2’s complement
integer) before decoding the remaining fields. This eliminates the need for “negative zero” and
all the complications of having two distinct bit patterns represent the same real value. (It is
possible for hardware to decode the meaning of a posit bit string directly without first taking the
absolute value, which makes the circuits faster and simpler. However, that makes the
explanation more complicated, so here we will assume the 2’s complement is used when
working with a negative posit value.)

◼ A machine instruction that tests if two integers are equal will also serve to compare two posits,
whereas float instructions need a additional exception tests for negative zero (equal even
though bit patterns are different) and also a check for NaN values (not equal, even when bit
patterns are identical).

◼ The number of identical regime bits r determines a positive or negative power of 22es
 that scales

the value, and the exponent bits scale the value by a power of 2 ranging from 20 to 22es-1. Like,
with es = 3, the three exponent bits can represent binary integers from 000 = 0 to
111 = 223-1 = 7. The regime bits determine the positive or negative power of 23 = 8, so the
regime and exponent together can express a signed integer k that works like the integer
expressed by the exponent bits in a float.

◼ There are no subnormal (denormalized) numbers. The implied "hidden bit" before the fraction
bits is always 1.

◼ Posits do not underflow to zero or overflow to infinity like floats do. Rounding is to the nearest
number, where “nearest” is the smallest difference when rounding fraction bits, and smallest
ratio when rounding exponent bits. There are no flags hidden in the state of the processor to
indicate that something happened during the calculation; what you see is what you get.
Debugging tools can provide a rich source of information regarding underflow, overflow, and
other exceptions when a code is being developed, but they do not burden the processor during
normal operation.

The other major component of the definition of posit arithmetic is the quire, the fixed-size set of
bits used for scratch operations that are mathematically exact in the g-layer. A quire can be
thought of as a dedicated register that permits dot products, sums, and other operations to be
performed with rounding error deferred to the very end of the calculation. All computers use a
hidden scratch area for temporary calculations. In posit arithmetic, the quire data type is accessi-
ble to the programmer, which is what makes possible for posits to follow the rules of algebra much
more closely than floats do. The quire concept is incredibly powerful. It allows posits to “punch
above their weight class.” We will later show some examples where 16-bit posits can outperform
64-bit floats at both speed and accuracy!

Posits4.nb 5

1.2 A 16-Bit Example

People always ask to see an example right away instead of wading through a litany of careful
definitions. So here is an example of how the bit fields work for a 16-bit posit. Pick es = 3, so the
regime bits scale by negative and positive powers of 223

= 256. Note: A “standard” 16-bit posit has
an es size of 1, not 3, but 3 works better here for purposes of illustration.

× × (1 +)

0

sign

+

regime

0 0 0

256-3

1

exponent

1 0 1

25

fraction

1 1 0 1 1 1 0 1

221 /256

The sign bit of 0 means the value is positive. The regime bits have a run of three 0s terminated by
the opposite bit 1, which means the power of useed is -3. The scale factor from the regime is
256-3. The exponent bits, 101, represent 5 as an unsigned binary integer, and contribute another
scale factor of 25. Lastly, the fraction bits 11011101 represent 221 as an unsigned binary integer,
so the fraction is 1 + 221 /256. The expression written underneath the bits works out to
477 × 2-27 ≈ 3.55393 × 10-6.

The regime bits may seem like a weird and artificial construct, but they actually arise from a
natural and elegant geometric mapping of binary integers to the projective real numbers on a
circle. The extraction of bit fields and their meaning will be discussed in more detail later.

Notice that the largest shift expressible by the exponent here is 111 = 7 bits, or 27. That means the
exponent can scale the fraction by a factor of 1, 2, 4, 8, …, or 128. If you need to scale by a factor
of 256, that’s where the regime bits come in, because they express powers of 256.

1.3 The two exception values for posits

The above description of bit fields and their meanings has exceptions for just two posit bit strings:
◼ If all bits are 0, the number represented is zero.
◼ If only the first bit is 1 and the rest are 0, the value represented is ±∞, sometimes called

“projective infinity” or “complex infinity” or “the point at infinity.” If you do not have a way to type
“±∞”, inf can be used to mean the same thing. The values ±∞ and zero are reciprocals of each
other, and the division of any nonzero number by zero does not trigger an error condition; it is
simply ±∞. The diagrams in Section 2 will make this more clear.

There is only one rounding mode: round to nearest, tie to nearest even, the same as the default
rounding mode for IEEE 754 floats. If a programmer or user feels the need for the other three
modes that floats support (round down, round up, round toward zero), that means the applica-
tion calls for valids, not posits, or perhaps just a decent debugging tool.

What “nearest” means in rounding is a bit more complicated than with floats, because the bits
clipped off on the right are not necessarily fraction bits; part or all of the exponent field can be
clipped off, too. When an exponent bit is clipped off and must be rounded, "nearest" means
"nearest exponent," and the tie point is the geometric mean between the two choices instead of
the arithmetic mean. If that worries you, consider that it happens very rarely, and only when the
calculation is about to hit the limits of the dynamic range so it’s probably already off the rails and
the algorithm needs to be debugged.

If a calculation exceeds the largest representable posit by some amount, should it overflow to
infinity? Certainly not! That would turn some finite amount of error into an infinitely wrong answer.
Which is what floats do. Similarly, we never allow underflow to zero since doing so means throw-
ing away all information about an answer… even the sign. As with nonstandard rounding modes, a
need to distinguish underflow, overflow, and NaN is generally an indication that an application is
still in development and not yet ready for production use. To quote Donald Knuth: “It has unfortu-
nately become customary in many instances to ignore exponent underflow and simply to set
underflows to zero with no indication of error. This causes a serious loss of accuracy in most
cases (indeed, it is the loss of all the significant digits), and the assumptions underlying floating
point arithmetic have broken down, so the programmer really must bet old when underflow has
occurred. Setting the result to zero is appropriate only in certain cases when the result is later to
be added to a significantly larger quantity.

To see why this is, imagine there is some chance that an application produces an out-of-range
number that is too large or too small. Posit arithmetic returns a number of magnitude maxpos or
minpos, and it is up to the programmer what to do about that. Which means the handling of such
situations is visible in the source code, like

6 Posits4.nb

What “nearest” means in rounding is a bit more complicated than with floats, because the bits
clipped off on the right are not necessarily fraction bits; part or all of the exponent field can be
clipped off, too. When an exponent bit is clipped off and must be rounded, "nearest" means
"nearest exponent," and the tie point is the geometric mean between the two choices instead of
the arithmetic mean. If that worries you, consider that it happens very rarely, and only when the
calculation is about to hit the limits of the dynamic range so it’s probably already off the rails and
the algorithm needs to be debugged.

If a calculation exceeds the largest representable posit by some amount, should it overflow to
infinity? Certainly not! That would turn some finite amount of error into an infinitely wrong answer.
Which is what floats do. Similarly, we never allow underflow to zero since doing so means throw-
ing away all information about an answer… even the sign. As with nonstandard rounding modes, a
need to distinguish underflow, overflow, and NaN is generally an indication that an application is
still in development and not yet ready for production use. To quote Donald Knuth: “It has unfortu-
nately become customary in many instances to ignore exponent underflow and simply to set
underflows to zero with no indication of error. This causes a serious loss of accuracy in most
cases (indeed, it is the loss of all the significant digits), and the assumptions underlying floating
point arithmetic have broken down, so the programmer really must bet old when underflow has
occurred. Setting the result to zero is appropriate only in certain cases when the result is later to
be added to a significantly larger quantity.

To see why this is, imagine there is some chance that an application produces an out-of-range
number that is too large or too small. Posit arithmetic returns a number of magnitude maxpos or
minpos, and it is up to the programmer what to do about that. Which means the handling of such
situations is visible in the source code, like

if (x = minpos || x = -minpos, 0, x);

In other words, if a programmer prefers that a calculation underflow, then explicitly replace the
small result with zero. It is rare for a programmer to want this. It is even more rare for a program-
mer to want a computer to underflow with the only indicator being a flag hidden in the processor
that can only be made visible using assembly language! For over thirty years, the IEEE 754
Standard has forced hardware engineers to put flags into processor registers in the hope that
popular computer languages would make them visible somehow. It hasn’t happened.

Exception values in any data type add to hardware complexity, and also increase energy consump-
tion. The posit format has far fewer exceptions than floats. In a 64-bit representation, floats have
quadrillions of bit patterns that represent "Not a Number" (NaN), whereas posits use those bit
patterns to represent numerical values. If the user asks for the square root of a negative number,
zero divided by zero, etc. with posits, the computer language should catch it and report it if that is
in the rules for the language. If something makes it through the protections of the language to
actually attempting something like 0 ÷ 0, the default behavior is to produce the posit for ±∞ and
continue computing, what float arithmetic calls "Quiet NaN." This avoids the logical contradiction of
declaring a result to be unrepresentable as a number, and then… representing it as a number. It
also avoids any need for the hardware to test for a NaN when beginning an arithmetic operation,
since NaN is not possible as an input. There is no bit string that represents it. The ±∞ value fulfills
the role of a “quiet NaN.” While a computer language should protect against the following situa-
tions,

±∞ + ±∞

±∞ – ±∞
0×∞
∞×0
0 ÷ 0
±∞ ÷ ±∞,

if it does not, we let ±∞ serve as the quiet NaN indicator. It is the dumping ground for all that goes
wrong and we can consider it to be “rounding to infinity.” Remember, even very large numbers
never round to infinity with posits, so getting ±∞ means you did one of the things your math teach-
ers told you never to do, liked dividing by zero. This policy is useful in situations, say, where an
array of numbers needs to be processed to completion and the cases that throw an exception can
be discarded. Sometimes, input data fails to come in so an value is completely unknown, but we
don’t want to halt computation because there was an occasional dropout. That’s when you need a
quiet NaN.

Some may object, "But the exception for the square root of a negative number is different, and I
need a different behavior for that!" Think about what this means. A program occasionally tries to
compute the a real number as the square root of a negative value. Is this something the hardware
should try to handle gracefully? Of course not. It's a bug. The programmer needs to stop that
situation from happening in the first place. The offending line of the code

Posits4.nb 7

In other words, if a programmer prefers that a calculation underflow, then explicitly replace the
small result with zero. It is rare for a programmer to want this. It is even more rare for a program-
mer to want a computer to underflow with the only indicator being a flag hidden in the processor
that can only be made visible using assembly language! For over thirty years, the IEEE 754
Standard has forced hardware engineers to put flags into processor registers in the hope that
popular computer languages would make them visible somehow. It hasn’t happened.

Exception values in any data type add to hardware complexity, and also increase energy consump-
tion. The posit format has far fewer exceptions than floats. In a 64-bit representation, floats have
quadrillions of bit patterns that represent "Not a Number" (NaN), whereas posits use those bit
patterns to represent numerical values. If the user asks for the square root of a negative number,
zero divided by zero, etc. with posits, the computer language should catch it and report it if that is
in the rules for the language. If something makes it through the protections of the language to
actually attempting something like 0 ÷ 0, the default behavior is to produce the posit for ±∞ and
continue computing, what float arithmetic calls "Quiet NaN." This avoids the logical contradiction of
declaring a result to be unrepresentable as a number, and then… representing it as a number. It
also avoids any need for the hardware to test for a NaN when beginning an arithmetic operation,
since NaN is not possible as an input. There is no bit string that represents it. The ±∞ value fulfills
the role of a “quiet NaN.” While a computer language should protect against the following situa-
tions,

±∞ + ±∞

±∞ – ±∞
0×∞
∞×0
0 ÷ 0
±∞ ÷ ±∞,

if it does not, we let ±∞ serve as the quiet NaN indicator. It is the dumping ground for all that goes
wrong and we can consider it to be “rounding to infinity.” Remember, even very large numbers
never round to infinity with posits, so getting ±∞ means you did one of the things your math teach-
ers told you never to do, liked dividing by zero. This policy is useful in situations, say, where an
array of numbers needs to be processed to completion and the cases that throw an exception can
be discarded. Sometimes, input data fails to come in so an value is completely unknown, but we
don’t want to halt computation because there was an occasional dropout. That’s when you need a
quiet NaN.

Some may object, "But the exception for the square root of a negative number is different, and I
need a different behavior for that!" Think about what this means. A program occasionally tries to
compute the a real number as the square root of a negative value. Is this something the hardware
should try to handle gracefully? Of course not. It's a bug. The programmer needs to stop that
situation from happening in the first place. The offending line of the code

y = sqrt (x)

needs to be replaced with something like

y = if (x ≥ 0, (*then*)sqrt (x), (*else*) reportsquarerooterror (x))

or it may be that the definition of the sqrt(x) function is to produce an error message and halt, in
a particular language and computing environment. If the handling of errors is entrusted to an
interrupt that invokes the operating system, that means there will be different behavior on different
systems. The next objection is usually “But conditional statements will slow down my code!” The
answer to this is similarly to ask if hardware is supposed to handle programming bugs at full
speed, or if the programmer should figure out the places where exceptions can happen, and
protect just those places with explicit instructions about what to do. Obviously, the latter. Asking
hardware to always be on the lookout for errors and to produce detailed info about what happened
is like turning on debug mode when compiling a program, and then demanding that debug mode
runs at full speed so that production codes can always be in debug mode with no performance
penalty. Experienced programmers will recognize the foolishness of such a demand.

Valid mode has far more informative ways of representing the results of operations as sets
(including the empty set), and can continue computing even when mathematicians would pro-
nounce a result indeterminate. Posits are designed for speed, simplicity, and economy, which for
many computer users (such as those who play video games, or who use numerical methods for
which floats appear to be good enough in practice), for whom speed is paramount. For those
concerned with rigorous computing that puts bounds on results and tracks any loss of accuracy, or
those still working out the numerical behavior of an algorithm to make sure it behaves, valid mode
is the answer.

8 Posits4.nb

or it may be that the definition of the sqrt(x) function is to produce an error message and halt, in
a particular language and computing environment. If the handling of errors is entrusted to an
interrupt that invokes the operating system, that means there will be different behavior on different
systems. The next objection is usually “But conditional statements will slow down my code!” The
answer to this is similarly to ask if hardware is supposed to handle programming bugs at full
speed, or if the programmer should figure out the places where exceptions can happen, and
protect just those places with explicit instructions about what to do. Obviously, the latter. Asking
hardware to always be on the lookout for errors and to produce detailed info about what happened
is like turning on debug mode when compiling a program, and then demanding that debug mode
runs at full speed so that production codes can always be in debug mode with no performance
penalty. Experienced programmers will recognize the foolishness of such a demand.

Valid mode has far more informative ways of representing the results of operations as sets
(including the empty set), and can continue computing even when mathematicians would pro-
nounce a result indeterminate. Posits are designed for speed, simplicity, and economy, which for
many computer users (such as those who play video games, or who use numerical methods for
which floats appear to be good enough in practice), for whom speed is paramount. For those
concerned with rigorous computing that puts bounds on results and tracks any loss of accuracy, or
those still working out the numerical behavior of an algorithm to make sure it behaves, valid mode
is the answer.

The current IEEE 754 definition attempts a mixture of the two esthetics, speed and validity,
which means it achieves neither. “Almost true” is mathematically the same as “false.”

For example, the variety of rounding modes is touted as a technique for checking the sensitivity of
an algorithm to rounding error, but that technique still provides no guarantees of validity and it
adds complexity to the circuitry. Similarly, "negative zero" is sometimes treated as some kind of
indicator of a negative infinitesimal, and at other times it is simply zero, creating more complexity
and gate delays for hardware designers, but infinitesimally little value to their customers.

2 Specifics: Converting a posit bit string to a value

2.1 Setting the posit environment

We defined the computing environment with esizesize and fsizesize in Type I unums. Instead,
here, we define nbits and es as the global integer values we need for establishing the meaning of
a posit. The value nbits is the total number of bits in the number and can be any integer 2 or
greater; es, the number of exponent bits, can be any integer 0 or greater. The nbits and es values
can be chosen independent of each other; it may seem strange, but you can have, say, a 4-bit
posit with a maximum of 5 exponent bits. It does not break the math.

Similarly to Type I unums, the setpositenv routine uses nbits and es to compute values that
characterize the posit environment. The number of possible bit patterns, npat, is 2nbits. The value
22es

 is called useed because it arises so often. Besides computing npat and useed, setpositenv
finds the minimum and maximum positive numbers, minpos and maxpos. Those values determine
the dynamic range, consistent with IEEE floats. The extremes are always exact reciprocals for
posits; 1

minpos
= maxpos; the dynamic range is perfectly balanced about 1.0, and every power of 2

has an exact reciprocal. (These properties do not hold for IEEE floats.)

It is also necessary to set the size of the quire register, qsize, and the number of extra bits it has
for worst-case summations that produce carry bits, qextra. The quire register will be explained
later in a section on Fused Operations.

setpositenv[{n_Integer /; n ≥ 2, e_Integer /; e ≥ 0}] :=
{nbits, es} = {n, e};
npat = 2nbits;
useed = 22es;
{minpos, maxpos} = useed-nbits+2, useednbits-2;
qsize = 2Log2,(nbits-2) 2es+2+5;
qextra = qsize - (nbits - 2) 2es+2;

For example, a 6-bit posit environment with a single exponent bit is established this way:

Posits4.nb 9

For example, a 6-bit posit environment with a single exponent bit is established this way:

setpositenv[{6, 1}]

That command assigned these global variables:

{nbits, es, npat, useed, minpos, maxpos, qsize, qextra}

6, 1, 64, 4,
1

256
, 256, 64, 32

Most computer architectures have a strong preference for powers of two as the bit sizes for vari-
ables, or at least multiples of 8-bit bytes. If it is not a performance burden for a computer to use,
say, 56-bit posits instead of 64-bit floats, then the 56-bit posits can often provide more accurate
answers than 64-bit floats. The savings in memory and bandwidth needed for the smaller numbers
may save time (and energy and power) on bandwidth-limited computers, depending on how much
they require alignment of fetches and stores on larger power-of-two boundaries. Users may
discover that 64-bit floats are overkill for their application, but that they need more accuracy or
dynamic range than a 32-bit float provides; in some of those cases, a 32-bit posit may suffice and
produce a clear performance and storage advantage over 64-bit standard floats. Similarly, 16-bit
posits can sometimes replace 32-bit floats, and we know of at least one application (neural net-
work training) where 8-bit posits can replace 16-bit floats. The use of the quire register is a power-
ful way to create long sequences of arithmetic operations with only one rounding error at the end,
and can even allow 16-bit posits to replace 64-bit floats in some situations.

Notice that the ratio of maxpos to minpos is useed2 nbits-4, which determines the dynamic range of
the posits. Recall that useed is 22es

. The posit format uses regime bits to raise useed to the power
of any integer from -nbits + 1 to nbits - 1, so the dynamic range is an exponential of an exponen-
tial of an exponential. Hence, posits can create a larger dynamic range from fewer exponent bits
than the system used for IEEE floats, leaving more fraction bits available to improve the accuracy
of results. In other words, the es setting is powerful, so be careful with that thing. A value larger
than 5 might tax your computer’s memory; simply printing the exact value of minpos with es = 5
requires several gigabytes.

2.2 Extracting the sign bit

A posit bit string, if interpreted as a 2’s complement integer, would range from -npat to npat - 1.
Mathematica does not handle 2’s complement integers as a native type, so this explanation will
have to make do with integers between 0 and npat - 1. The unsigned integer for npat /2 is the
posit bit string that represents ±∞. If you have signed integers the posit bit string for ±∞ looks like
-npat /2.

The positQ test returns True if an input integer (considered as a bit string) is a viable posit, and
False otherwise.

10 Posits4.nb

positQ[p_Integer] := 0 ≤ p < npat

The following function will help deal with the lack of 2’s complement integers in Mathematica.

twoscomp[sign_, p_] := Mod[If[sign > 0, p, npat - p], npat]

Extracting the sign bit of a posit is easy, It’s the most significant bit, 0 for positive numbers (and
zero) or 1 for negative numbers (and ±∞). The color-coding of bits, similar to that used for all types
of unums, makes long binary strings easier to read. The sign bit is color-coded red (RGB compo-
nents 1, 0.125, 0):

signbit[p_ /; positQ[p]] := IntegerDigits[p, 2, nbits]〚1〛

Test it at the extreme points of possible posit values, including an illegal one for the {6, 1} environ-
ment we just set:

signbit[1]
signbit[npat - 1]
signbit[npat]

0

1

signbit[64]

Notice that the positQ function protects us from evaluating the signbit of the out-of-range
integer npat, since the posit bit strings range from 0 to npat - 1 (when viewed as unsigned inte-
gers). In a C environment, the test that an input p is a signed integer representing a valid posit
would be to require -32 ≤ p < 32, not 0 ≤ p < 64. (When Mathematica is asked to perform an out-of-
domain operation, it simply echoes the expression back to the user, like when it returns
“signbit[64]” above.)

2.3 Extracting the regime bits

The regime bits are dictated by the length of the run of identical bits, either all 0s or all 1s. Identical
regime bits are color-coded amber (RGB 0.8, 0.6, 0.2). A simple way to decode it is, if the posit
has a sign bit of 1, negate the bit string for the posit as a 2's complement signed integer (which
means flip all the bits and add 1). In assembly language, many of the complicated-looking expres-
sions in this function are single opcodes that execute in one clock cycle on most processors, like
“Find First One” or “Count Leading Zeros.” In the regimebits function we take the binary digits
apart as a string, but real hardware (or a routine in a low-level language) could perform bit extrac-
tion much more quickly and simply.

The run of bits terminates when we reach the end of the string, or when the opposite bit happens.
The opposite bit that terminates a regime is color-coded brown (RGB 0.6, 0.4, 0.2).

Posits4.nb 11

The regime bits are dictated by the length of the run of identical bits, either all 0s or all 1s. Identical
regime bits are color-coded amber (RGB 0.8, 0.6, 0.2). A simple way to decode it is, if the posit
has a sign bit of 1, negate the bit string for the posit as a 2's complement signed integer (which
means flip all the bits and add 1). In assembly language, many of the complicated-looking expres-
sions in this function are single opcodes that execute in one clock cycle on most processors, like
“Find First One” or “Count Leading Zeros.” In the regimebits function we take the binary digits
apart as a string, but real hardware (or a routine in a low-level language) could perform bit extrac-
tion much more quickly and simply.

The run of bits terminates when we reach the end of the string, or when the opposite bit happens.
The opposite bit that terminates a regime is color-coded brown (RGB 0.6, 0.4, 0.2).

regimebits[p_ /; positQ[p]] :=
Module[{q = twoscomp[1 - signbit[p], p], bits, bit2, npower, tempbits},
bits = IntegerDigits[q, 2, nbits];
bit2 = bits〚2〛; (* Look for the run length after the sign bit. *)

tempbits = Join[Drop[bits, 1], {1 - bit2}]; (* Drop the sign bit,
but append a complement bit as a sure-fire way to end the run. *)

npower = (Position[tempbits, 1 - bit2, 1, 1])〚1〛 - 1;
(* Find first opposite bit. *)

Take[bits, {2, Min[npower + 1, nbits]}]]

The interpretation of the regime bits is a lot like clothing sizes; L is Large, XL is Extra Large, XXL
is Extra Extra Large, and so on. Count the number of X characters. The function regimevalue
uses a similar principle, and it’s a one-liner function. It could have been the direct output of
regimebits, but for clarity, we calculate the integer represented by the regime bits in two stages.

regimevalue[bits_] := If[bits〚1〛 ⩵ 1, Length[bits] - 1, -Length[bits]]

Here are two examples. Notice that for positive exponents, the regime value is one less than
the number of bits in the run, since we need to be able to represent a value of zero. Again,
hardware would have no trouble doing this kind of thing very quickly; it looks a lot like 2’s comple-
ment logic.

First, a small positive number (remember, we are still in a 6-bit posit environment):

regimebits[2^^000011]
regimevalue[%]

{0, 0, 0}

-3

Next, try a negative number, so that it gets negated 2’s complement style, and the run of 0 bits
turns into a run of 1 bits. Note: the 2’s complement of 100001 is 011110 + 1 = 011111; that is, flip
all the bits and add 1.

regimebits[2^^100001]
regimevalue[%]

{1, 1, 1, 1, 1}

4

2.4 Extracting the exponent bits

The next field is the exponent bits. Even if es is greater than zero, there might not be any expo-
nent bits, because the regime bits can crowd some or all of them off the right end of the number!
For example, 011111 has no exponent bits, and neither does 011110. Exponent bits start to
appear for shorter runs of regime bits, like 011100 and 011101.

In the following code, the run of regime bits is terminated by the opposite bit, so we skip over that
termination bit and look at the next es bits or however many are left, whichever is smaller. The
result can be anything from the empty set, { }, to a sequence of bits of length es.

12 Posits4.nb

The next field is the exponent bits. Even if es is greater than zero, there might not be any expo-
nent bits, because the regime bits can crowd some or all of them off the right end of the number!
For example, 011111 has no exponent bits, and neither does 011110. Exponent bits start to
appear for shorter runs of regime bits, like 011100 and 011101.

In the following code, the run of regime bits is terminated by the opposite bit, so we skip over that
termination bit and look at the next es bits or however many are left, whichever is smaller. The
result can be anything from the empty set, { }, to a sequence of bits of length es.

exponentbits[p_ /; positQ[p]] :=
Module[{q = twoscomp[1 - signbit[p], p], bits, startbit},
startbit = Length[regimebits[q]] + 3;
bits = IntegerDigits[q, 2, nbits];
If[startbit > nbits, {},
Take[bits, {startbit, Min[startbit + es - 1, nbits]}]]]

There is no “bias” in these exponent bit strings as there is with floats, so the power of 2 they
express is simply an unsigned integer. Exponent bits are color-coded blue (RGB value 0.25, 0.5,
1). If the exponent bits are 110 = 6, that means 26 is the scale factor contributed by the exponent
bits. If there are no exponent bits, then the exponent is zero and the scale factor contributed by
the exponent bits is 20 = 1.

2.5 Extracting the fraction bits

Once we have the fraction bits, we have all four parts of the posit bit string and can directly com-
pute the value it represents. The fraction bits are all the bits to the right of the exponent, if they
haven’t been crowded off the right end by the other bits. (If they have, the value of the fraction is 1.
In other words, the hidden bit is always 1, even if there is no place to hide it!) The fractionbits
function differs from exponentbits only in using a value for startbit that is es bits farther to the
right, and in taking all remaining bits instead of stopping at a set maximum number. This is how
posits have variable accuracy depending on the scale factor. If the scale factor is small, there will
be plenty of bits to express a highly-accurate fraction. The bigger or smaller the magnitude of a
posit, the fewer bits remain for accuracy.

fractionbits[p_ /; positQ[p]] :=
Module[{q = twoscomp[1 - signbit[p], p], bits, startbit},
startbit = Length[regimebits[q]] + 3 + es;
bits = IntegerDigits[q, 2, nbits];
If[startbit > nbits, {}, Take[bits, {startbit, nbits}]]]

The color-coding of the fraction bits is simply to leave them black.

2.6 Assembling the pieces: the p2x function

Following the naming conventions of the Type I unum prototype environment, we call the function
that changes a posit bit string p into a mathematical value x the p2x function. It puts the pieces
together as follows:

Posit value represented by signed integer p =

p = 0, 0,
p = -npat /2, ±∞,
all other p, (-1)s×useedk×2e× f

where s = the sign bit, k is the integer represented by the regime bits, e is the integer represented
by the exponent bits, and f is the fraction (including the hidden bit, which is always 1.) The follow-
ing routine extracts s, k, e, and f, and then applies the above formula.

Posits4.nb 13

where s = the sign bit, k is the integer represented by the regime bits, e is the integer represented
by the exponent bits, and f is the fraction (including the hidden bit, which is always 1.) The follow-
ing routine extracts s, k, e, and f, and then applies the above formula.

p2x[p_ /; positQ[p]] :=
Modules = (-1)signbit[p], k = regimevalue[regimebits[p]],

e = exponentbits[p], f = fractionbits[p],
e = Join[e, Table[0, es - Length[e]]];
(* Pad with 0s on the right if they are clipped off. *)

e = FromDigits[e, 2];
Iff ⩵ {}, f = 1, f = 1 + FromDigits[f, 2] × 2-Length[f]

;
Which
p ⩵ 0, 0,
p ⩵ npat / 2, ComplexInfinity, (* The two exception values, 0 and ±∞ *)

True, s × useedk × 2e × f

(Since Mathematica doesn’t support 2’s complement integers, the test for ±∞ is if p is npat/2
instead of –npat /2. And we use ComplexInfinity as Mathematica’s equivalent for ±∞.)

The “colorcodep” function makes the posit binary strings easier to read by first showing the
original bits, and then coloring the bit fields for either that number or its 2’s complement if it is on
the left half of the projective real circle.

colorcodep[p_ /; positQ[p]] := Module[{s = signbit[p],
r = regimebits[p], e = exponentbits[p], f = fractionbits[p]},

Row[{IntegerString[p, 2, nbits], "→",
Style[If[s ⩵ 0, "+", "-"],],
Style[Row[r],],
If[Length[r] ≤ nbits - 2, Style[1 - r〚1〛,], ""],
If[Length[e] > 0, Style[Row[e],], ""],
If[Length[f] > 0, Row[f], ""]}]]

We need at least two exponent bits to demonstrate how the exponent bits can be crowded out by
the regime bits, so we will change the environment to {6, 2}, and create a table of every possible
bit string and what it means. The table starts with the bit string representing the smallest signed
integer (100000 is –32), counts up to zero, and keeps going to the largest signed integer (011111
is +32):

14 Posits4.nb

setpositenv[{6, 2}];
Table[Row[{colorcodep[u + j], " ", p2x[u + j], " "}],

{u, 0, 31}, {j, 32, 0, -32}] // TableForm

100000→-00000 ComplexInfinity 000000→+00000 0

100001→-11111 -65536 000001→+00001 1

65536

100010→-11110 -4096 000010→+00010 1

4096

100011→-11101 -1024 000011→+00011 1

1024

100100→-11100 -256 000100→+00100 1

256

100101→-11011 -128 000101→+00101 1

128

100110→-11010 -64 000110→+00110 1

64

100111→-11001 -32 000111→+00111 1

32

101000→-11000 -16 001000→+01000 1

16

101001→-10111 -12 001001→+01001 3

32

101010→-10110 -8 001010→+01010 1

8

101011→-10101 -6 001011→+01011 3

16

101100→-10100 -4 001100→+01100 1

4

101101→-10011 -3 001101→+01101 3

8

101110→-10010 -2 001110→+01110 1

2

101111→-10001 - 3

2
001111→+01111 3

4

110000→-10000 -1 010000→+10000 1

110001→-01111 - 3

4
010001→+10001 3

2

110010→-01110 - 1

2
010010→+10010 2

110011→-01101 - 3

8
010011→+10011 3

110100→-01100 - 1

4
010100→+10100 4

110101→-01011 - 3

16
010101→+10101 6

110110→-01010 - 1

8
010110→+10110 8

110111→-01001 - 3

32
010111→+10111 12

111000→-01000 - 1

16
011000→+11000 16

111001→-00111 - 1

32
011001→+11001 32

111010→-00110 - 1

64
011010→+11010 64

111011→-00101 - 1

128
011011→+11011 128

111100→-00100 - 1

256
011100→+11100 256

111101→-00011 - 1

1024
011101→+11101 1024

111110→-00010 - 1

4096
011110→+11110 4096

111111→-00001 - 1

65536
011111→+11111 65536

3 Visualizing the Projective Reals

Posits4.nb 15

3 Visualizing the Projective Reals

3.1 The smallest posit size with a useed

Unlike the real number line, the projective reals wrap the line onto a circle so that negative and
positive infinity meet at the top.

Sometimes the way things were invented is not the easiest way to understand them, which is why
we first showed the bit fields in Section 2, and only now show their geometrical derivation. Type III
posit arithmetic is derived from Type II unums that also map binary integers to the projective reals,
but in Type III we relax the requirement that all values have an exact reciprocal. Both Type II and
Type III unums start with this two-bit template:

00

01

10

11 -1 1

±∞

0

The 2’s complement signed integers around the outside of the ring wrap from positive to negative
at exactly the same point the real numbers do. This eliminates “negative zero”; it unfortunately
takes away –∞ and +∞ as distinct quantities, but the workarounds for that are much simpler than
having to deal with two forms of zero that are sometimes considered equal and sometimes treated
differently, which is what IEEE floats do.

The above ring is only two bits, yet it represents a number system. We move to three bits by
inserting a value between 1 and ±∞. It could be real number greater than 1; it could be 2, or 10, or
π, or 1.00003, or 10100. The choice “seeds” the way the rest of the ring of unums gets populated,
so we call it the useed. We follow Type II rules and make sure negation reflects about the vertical
axis and reciprocation reflects about the horizontal axis.

16 Posits4.nb

000

001

010

011

100

101

110

111

-1 1

±∞

0

useed-useed

1/useed-1/useed

For the next step, what should we put between useed and ±∞? Well, useed 2 certainly works. We
then could get an elegant new symmetry by putting useed1/2 = useed between 1 and useed,

especially if useed is an integer that fits computer hardware nicely. If useed is an integer,
we can repeat the process.

The useed values that are computer hardware-friendly are 2, 22, 22
2, etc., repeatedly squaring to

make sure we can repeatedly take the square root and get back to 2. The number series is 2, 4,
16, 256, 65536,…. Between 1 and 2 we can populate the ring linearly, that is, {1, 1.5, 2} if we have
one more bit, or {1, 1.25, 1.5, 1.75, 2} if you have two more bits, and so on, exactly the way a
floating-point fraction works. The number of times you square to get useed, starting with the value
2, is es. This is why useed = 22es

.

The ringplot routine shows posits representing projective real numbers arranged on a ring, with
their mathematical form on the inside and the color-coded binary form on the outside. It uses
whatever nbits and es environment settings are in place. We switch to rotated text so we can cram
more values into the space, even though it makes it slightly peculiar to read. Try it for nbits = 3 and
es = 1:

Posits4.nb 17

setpositenv[{3, 1}]; ringplot

000
→
+00

0 001
→
+01

1
/4

010→+101

01
1→

+
11

4

100
→
-00

±
∞

101
→
-11

-4

110→-10 -1

11
1→

-
01

-1
/4

If the ring were the points of a compass, +1 is always east, –1 is west, 0 is south, and ±∞ is north.
The value of useed is always at the northeast point of the compass. Reflecting about the vertical
axis always gives the negative of every number. Reflecting about the horizontal axis gives the
exact reciprocal for 0, ±∞, and all powers of two; it gives the approximate reciprocal for values
between powers of two; the value represented by the horizontal reflection of a posit value x ranges
from 1

x
 to 1.125

x
 in all cases.

These unums have a recursive definition. In appending a bit by increasing nbits, appending 0 does
not change the value; appending 1 creates a new point on the circle midway between existing
values, with the following rules for what value it represents:
◼ If it is next to the bottom of the circle between 0 and ±2 j, the new value is smaller than ±2 j by a

ratio of useed. (The added bit is a regime bit.)
◼ If it is next to the top of the circle between ±2 j and ±∞, the new value is larger than ±2 j by a

ratio of useed. (The added bit is a regime bit.)
◼ If it is between two values of magnitude 2i and 2 j where integers i and j differ by more than 1,

the new value has magnitude 2(i+ j)2. (The added bit is an exponent bit.)
◼ If it is between any other adjacent points x and y, it represents (x + y) /2. (The added bit is a

fraction bit.)

3.2 Introducing exponent bits

The system for adding new points on the ring is simpler than it sounds. Check the color coding for
a 4-bit posit; the exponent bits start to show up in the east and the west parts of the ring:

18 Posits4.nb

setpositenv[{4, 1}]; ringplot

0000
→
+000

0

0001
→
+001

1
/16 0010

→
+010

1 /4

0011→+011

1 /2

0100→+1001

0101
→+

101

2

01
10
→
+
11
0

4

01
11

→
+
11
1

16

1000
→
-000

±
∞

1001
→
-111

-16

1010
→
-110

-41011→-101
-2

1100→-100 -1

1101
→-

011
-1 /2

11
10
→
-
01
0

-1
/4

11
11

→
-
00
1

-
1 /

16

Notice that every value in the previous ring plot stays in place, with a 0 appended to its representa-
tion. The new values are between the previous ring plot values, and end in a 1 bit. This is one of
the beautiful properties of these numbers; they stay put when increasing precision by appending a
0 bit, and the in-between points created by appending a 1 bit automatically increase both dynamic
range (top and bottom) and accuracy (left and right).

Another thing you can notice is that the first two bits always determine the quadrant of the circle
where the number resides. As with Type II unums, think of them as the sign-reciprocal bits. The
first two bits are

00 in the southeast, 0 ≤ x < 1
01 in the northeast, 1 ≤ x <∞,
10 in the northwest, -∞ < x < -1,
11 in the southwest, -1 ≤ x < 0.

That also might help explain how hardware can decode the regime bits without taking the 2’s
complement of a number first.

3.3 Fraction bits appear

The next step takes us to five bits, and then the complete pattern emerges. At the top and bottom
of the circle, adding a bit always extends the dynamic range by a factor of useed larger and
smaller. At the right and the left sides of the circle, adding a bit always now adds one bit of preci-
sion to the fraction. With five bits, we now see fraction bits appear in the eastern and western parts
of the projective real circle.

Posits4.nb 19

The next step takes us to five bits, and then the complete pattern emerges. At the top and bottom
of the circle, adding a bit always extends the dynamic range by a factor of useed larger and
smaller. At the right and the left sides of the circle, adding a bit always now adds one bit of preci-
sion to the fraction. With five bits, we now see fraction bits appear in the eastern and western parts
of the projective real circle.

setpositenv[{5, 1}]; ringplot

00000
→
+0000

0

00001
→
+0001

1
/64

00010
→
+0010

1
/16 00011

→
+0011

1
/8 00100

→
+0100

1 /4 00101→
+0101

3 /8
00110→+0110

1 /2
00111→+0111

3 /4

01000→+10001

01001→
+1001

3 /2

0101
0→+

1010

2

010
11→

+10
11

3

01
10
0→

+
11
00

4

01
10
1→

+
11
01

8
01
11
0→

+
11
10

16
01
11
1→

+
11
11

64

10000
→
-0000

±
∞

10001
→
-1111

-64

10010
→
-1110

-16

10011
→
-1101

-8

10100
→
-1100

-4

10101→
-1011

-3
10110→-1010

-210111→-1001 -3 /2
11000→-1000 -1

11001→
-0111 -3 /4

1101
0→-

0110
-1 /2

110
11→

-01
01

-3 /8

11
10
0→

-
01
00

-1
/4

11
10
1→

-
00
11

-1
/8

11
11
0→

-
00
10

-
1 /

16
11
11
1→

-
00
01

-
1 /

64

If you increase the number of bits in an IEEE float, you have to decide how many bits to increase
in the exponent and how many in the fraction. Changing the number of IEEE exponent bits also
means changing the bias in the exponent, so in general it is a complicated thing to convert from
one IEEE precision to another. That is also true for Type I unums. With Type III posits, it is trivial:
you just add bits to the right. Adding bits to the end of a posit increases dynamic range at the north
and south parts of the ring, and accuracy at the east and west parts of the ring. This suggests that
a calculation can very easily change the environment settings as it progresses.

In the above plot, notice that numbers ending with fraction bits do not have perfect reciprocals in
their reflected quantity. Close, but not quite. The reflection of 3/2 is 3/4, not 2/3. The reflection of 3
is 3/8, not 1/3. The reflected posit value is still an excellent starting point for an iterative method for
computing the reciprocal. Relaxing the requirement that reciprocals be perfect for every number is
what makes posits simple and hardware-friendly, by restricting all finite numbers to the form 2m×n
where m and n are integers.

3.4 A six-bit ringplot

If we attempt 6 bits, the ringplot is still readable.

20 Posits4.nb

setpositenv[{6, 1}]; ringplot

000000
→
+00000

0

000001
→
+00001

1
/256

000010
→
+00010

1
/64

000011
→
+00011

1
/32

000100
→
+00100

1
/16

000101
→
+00101

3
/32

000110
→
+00110

1
/8

000111
→
+00111

3
/16 001000

→
+01000

1 /4 001001
→
+01001

5 /16 001010→
+01010

3 /8 001011→+01011

7 /16 001100→+01100

1 /2
001101→+01101

5 /8
001110→+01110

3 /4
001111→+01111

7 /8
010000→+100001

010001→+10001
5 /4

010010→
+10010

3 /2

01001
1→+1

0011

7 /4

0101
00→

+101
00

2

010
101

→+
101

01

5 /2

010
110

→
+10

110

3

01
01
11
→
+1
01
11

7 /
2

01
10
00
→
+
11
00
0

4

01
10
01
→
+
11
00
1

6
01
10
10

→
+
11
01
0

8
01
10
11

→
+
11
01
1

12
01
11
00

→
+
11
10
0

16
01
11
01

→
+
11
10
1

32
01
11
10

→
+
11
11
0

64
01
11
11

→
+
11
11
1

25
6

100000
→
-00000

±
∞

100001
→
-11111

-256

100010
→
-11110

-64

100011
→
-11101

-32

100100
→
-11100

-16

100101
→
-11011

-12

100110
→
-11010

-8

100111
→
-11001

-6

101000
→
-11000

-4

101001
→
-10111

-7 /2

101010→
-10110

-3

101011→-10101
-5 /2

101100→-10100
-2

101101→-10011
-7 /4

101110→-10010
-3 /2101111→-10001 -5 /4

110000→-10000 -1

110001→-01111 -7 /8

110010→
-01110

-3 /4

11001
1→-0

1101
-5 /8

1101
00→

-011
00

-1 /2

110
101

→-
010

11
-7 /1

6

110
110

→
-01

010
-3

/8

11
01
11
→
-0
10
01

-5
/16

11
10
00
→
-
01
00
0

-1
/4

11
10
01
→
-
00
11
1

-3
/1

6

11
10
10

→
-
00
11
0

-1
/8

11
10
11

→
-
00
10
1

-
3 /

32

11
11
00

→
-
00
10
0

-
1 /

16

11
11
01

→
-
00
01
1

-
1 /

32
11
11
10

→
-
00
01
0

-
1 /

64
11
11
11

→
-
00
00
1

-
1
/2

56

3.5 A seven-bit ringplot shows a million-to-one dynamic range

Pushing the graphics to the point where the values almost overlap but are still legible, a 7-bit posit
with a 1-bit exponent field can have a dynamic range of six orders of magnitude, yet also have
more than one decimal of relative accuracy for points near ±1.

Posits4.nb 21

setpositenv[{7, 1}]; ringplot

0000000
→
+000000

0
0000001

→
+000001

1
1024

0000010
→
+000010

1
256

0000011
→
+000011

1
128

0000100
→
+000100

1
64

0000101
→
+000101

3
128

0000110
→
+000110

1
32

0000111
→
+000111

3
64

0001000
→
+001000

1
16

0001001
→
+001001

5
64

0001010
→
+001010

3
32

0001011
→
+001011

7
64

0001100
→
+001100

1
8

0001101
→
+001101

5
32

0001110
→
+001110

3
16

0001111
→
+001111

7
32

0010000
→
+010000

1 4
0010001

→
+010001

9 32
0010010

→
+010010

5 16
0010011

→
+010011

11 32
0010100→

+010100

3 8 0010101→
+010101

13 32 0010110→+010110

7 16 0010111→+010111

15 32 0011000→+011000

1 2 0011001→+011001

9 16 0011010→+011010

5 8 0011011→+011011

11 16 0011100→+011100

3 4 0011101→+011101

13 16
0011110→+011110

7 8
0011111→+01111115 16
0100000→+1000001
0100001→+1000019 8
0100010→+100010

5 4
0100011→+100011

11 8
0100100

→+100100

3 2
010010

1→+10010
1

13 8

01001
10→+

10011
0

7 4

0100
111→

+100
111

15 8

0101
000→

+101
000

2

010
100

1→+
101

001

9 4

010
101

0→+
101

010

5 2

010
101

1→+
101

011

11 4

010
110

0→
+10

110
0

3

010
110

1→
+10

110
1

13 
4

01
01
11
0→

+1
01
11
0

7 
2

01
01
11
1→

+
10
11
11

15
4

01
10
00
0→

+
11
00
00

4

01
10
00
1→

+
11
00
01

5
01
10
01
0→

+
11
00
10

6
01
10
01
1→

+
11
00
11

7
01
10
10
0→

+
11
01
00

8
01
10
10
1→

+
11
01
01

10
01
10
11
0→

+
11
01
10

12
01
10
11
1→

+
11
01
11

14
01
11
00
0→

+
11
10
00

16
01
11
00
1→

+
11
10
01

24
01
11
01
0→

+
11
10
10

32
01
11
01
1→

+
11
10
11

48
01
11
10
0→

+
11
11
00

64
01
11
10
1→

+
11
11
01

12
8

01
11
11
0→

+
11
11
10

25
6

01
11
11
1→

+
11
11
11

10
24

1000000
→
-000000

±
∞

1000001
→
-111111

-1024

1000010
→
-111110

-256

1000011
→
-111101

-128

1000100
→
-111100

-64

1000101
→
-111011

-48

1000110
→
-111010

-32

1000111
→
-111001

-24

1001000
→
-111000

-16

1001001
→
-110111

-14

1001010
→
-110110

-12

1001011
→
-110101

-10

1001100
→
-110100

-8

1001101
→
-110011

-7

1001110
→
-110010

-6

1001111
→
-110001

-5

1010000
→
-110000

-4

1010001
→
-101111

-15 4

1010010
→
-101110

-7 2

1010011
→
-101101

-13 4

1010100→
-101100

-3

1010101→
-101011

-11 4

1010110→-101010
-5 2

1010111→-101001
-9 4

1011000→-101000
-2

1011001→-100111
-15 8

1011010→-100110
-7 4

1011011→-100101
-13 8

1011100→-100100 -3 2
1011101→-100011 -11 81011110→-100010 -5 41011111→-100001 -9 8
1100000→-100000 -1
1100001→-011111 -15 16

1100010→-011110 -7 8

1100011→-011101
-13 16

1100100
→-011100

-3 4

110010
1→-01101

1
-11 16

11001
10→-

01101
0

-5 8

1100
111→

-011
001

-9 16

1101
000→

-011
000

-1 2

110
100

1→-
010

111
-15 32

110
101

0→-
010

110
-7 16

110
101

1→-
010

101
-13 32

110
110

0→
-01

010
0

-3 
8

110
110

1→
-01

001
1

-1
1 

32

11
01
11
0→

-0
10
01
0

-5
1

6

11
01
11
1→

-
01
00
01

-9
3

2

11
10
00
0→

-
01
00
00

-1
4

11
10
00
1→

-
00
11
11

-7
3

2

11
10
01
0→

-
00
11
10

-3
1

6

11
10
01
1→

-
00
11
01

-5
3

2

11
10
10
0→

-
00
11
00

-1
8

11
10
10
1→

-
00
10
11

-7
6

4

11
10
11
0→

-
00
10
10

-
3 

32

11
10
11
1→

-
00
10
01

-
5 

64

11
11
00
0→

-
00
10
00

-
1 

16

11
11
00
1→

-
00
01
11

-
3 

64

11
11
01
0→

-
00
01
10

-
1 

32

11
11
01
1→

-
00
01
01

-
3

12

8
11
11
10
0→

-
00
01
00

-
1

64

11
11
10
1→

-
00
00
11

-
1

12

8
11
11
11
0→

-
00
00
10

-
1


25
6

11
11
11
1→

-
00
00
01

-
1


10
24

Perhaps this is a good place to point out how rounding is subtly different from what it is for floats. If
the rounded bit is a fraction bit, it’s exactly the same as for floats. Round to the nearest value, and
if there’s a tie, pick the number ending in a 0 bit. But suppose a calculation landed between 64
and 256; what is the midpoint where we decide if we round up or down? Notice that the rounded
bit there is an exponent bit, so you are rounding to the nearest exponent. For the hardware, it’s
exactly the same algorithm as when rounding fraction bits. The midpoint between 64 and 256, if
we had one more bit of precision, is 128. Numbers between 64 and 128 round to 64; numbers
between 128 and 256 round to 256; the exact value 128 is a tie, and 64 is the posit ending in a 0
bit, so 128 rounds to 64.

The rounding rules are therefore consistent, except for results near the exception values 0 and
±∞. Never round toward those extremes. Use -minpos, minpos, -maxpos, or maxpos instead. At
the very least, that preserves the correct sign of the answer.

22 Posits4.nb

3.6 Sneak Preview: Valid Arithmetic

One reason for carrying ringplots all the way to seven bits is that the one above forms an excellent
basis for 16-bit valids. As a preview to the world of powerful, guess-free arithmetic, valids are pairs
of posits that each have an uncertainty bit, or ubit appended to the fraction, forming a tile. Ubits
are color-coded in magenta (RGB 1, 0, 1). The ubit is 0 for all the values shown above, and 1 for
all the open intervals between the values shown above. A possible 16-bit valid format is a pair of 7-
bit posits with ubits at the end of each one, like this:

s

sign

u

ubitregime

r ⋯ r

exponent

e1⋯ ees

fraction

f1⋯ s

sign

u

ubitregime

r ⋯ r

exponent

e1⋯ ees

fraction

f1⋯

Lower tile Upper tile

(Again we use a general es value for the purpose of illustration. The es value for such a small
number of bits would almost certainly be 0. In the ringplot above, es is 1.)

Each tile can be any value shown in the above ring of 7-bit posits, followed by a 0 ubit or a 1 ubit.
Conventional interval arithmetic is in the form of closed intervals [a, b] where a and b are floats,
and a ≤ b. In the case of valids The endpoints need not be ordered. The lower tile says where to
start on the ring; the interval represented includes all tiles counterclockwise from the lower tile until
you reach the upper tile, which is also included in the set; it wraps around the circle, crossing ±∞ if
necessary! This allows representation of closed, open, and half-open intervals, and because of the
use of the projective reals, contiguous intervals remain contiguous under addition, subtraction,
multiplication, and division. For example, the half-open interval (-1 /4, 1 /16] in the {8, 1} environ-
ment of the above ringplot is represented by the pair of tiles

111000111→–00111011, representing the tile (-1 /4, -7 /32), and
001000000→–00100000, representing the tile 1 /16.

That’s a compact way to say the set of all tiles between the two points:

(-1 /4, -7 /32), -7 /32, (-7 /32, -3 /16), -3 /16, …, 3 /64, (3 /64, 1 /16), 1 /16.

To reiterate: posits are for where floats are good enough, and the algorithms have been shown
reliable enough to satisfy user requirements. In contrast, valids are for where you need a provable
bound on the answer. Or when you are still developing an algorithm and debugging its numerical
behavior. Or where you want to describe sets of real numbers and not just point values. The
algorithms for valids are often quite different from the ones for floats, and vice versa. Valids can
express a rich source of exception conditions that are useful for debugging, such as the empty set,
the entire set of real numbers, or trigger a halt when the interval has gotten too wide (as set by the
user) to be useful. Details about the use of valids are discussed elsewhere, but for now the inter-
ested reader is referred to The End of Error: Unum Arithmetic and its discussion of "ubounds."

Posits4.nb 23

3.7 Visualizing the regime bits on the projective real ring

Now that we have shown how reals and integers map geometrically onto a ring, we can visualize
the regime bits in particular, by looking at the right half of the ring and showing how the powers of
useed crowd together at the top and bottom of the ring:

us
ee

d

us
ee

d
2

us
ee

d
3

us
ee

d
4

useed -1

useed
-2

useed
-3

useed
-4

0

1

±∞

Regime 0

Re
gim

e
1

R
eg

im
e

2

R
eg

im
e

3

10⋯
11
0⋯

11
10

⋯

11
11
0⋯

Regime -1

Regim
e
-2

R
egim

e
-3

R
egim

e
-4

01⋯

001
⋯

0001
⋯

00001
⋯

It takes some getting used to, but the regime-exponent pair describes a scale factor of a power of
2 the same way the exponent (minus the bias) does for IEEE Standard floats.

If es is 1 or more, we could put useed 0.5 between 1 and useed, and useed1.5 between useed and
useed 2, and so on. If es is 2 or more, we get equal-spaced values useed 0.25, useed 0.5 and
useed 0.75 between 1 and useed. In other words, the exponent bits are the fraction bits of the
power of useed represented by the regime bits.

24 Posits4.nb

It takes some getting used to, but the regime-exponent pair describes a scale factor of a power of
2 the same way the exponent (minus the bias) does for IEEE Standard floats.

If es is 1 or more, we could put useed 0.5 between 1 and useed, and useed1.5 between useed and
useed 2, and so on. If es is 2 or more, we get equal-spaced values useed 0.25, useed 0.5 and
useed 0.75 between 1 and useed. In other words, the exponent bits are the fraction bits of the
power of useed represented by the regime bits.

4 Converting values into posits

4.1 Building the x2p conversion function

The method for converting any real value into posit representation is very similar to the way you
could convert a number of any type into a float. After checking for exceptions cases (which for
posits is simply 0 and ±∞), the number is divided by two or multiplied by two until it is in the inter-
val [1, 2), which then determines the fraction. In the case of posits, the useed is a kind of
“batched” form of powers of two, so we first divide by useed or multiply by useed until it is in the
interval [1, useed). Then the value is repeatedly divided by 2 until it is in the interval [1, 2), and
that determines the exponent. The exponent will always be nonnegative, eliminating the need for a
bias. The fraction always has a leading 1 bit to the left of the binary point, eliminating the need to
handle subnormal exception values that have a 0 bit to the left of the binary point.

The approach could be used to convert a fixed point number, an integer, a float, or any other type
that can be repeatedly multiplied or divided by two until it is in the range [1, 2). In Mathematica,
values are generic “numeric” values, and we need only include values of infinite magnitude in the
set of allowed numeric types to assure that it is possible to turn it into a posit. The positableQ
function returns True if its argument can be turned into a posit, and False otherwise.

positableQ[x_] := (Abs[x] ⩵ ∞ x ∈ Reals)

Finally, here is the function that runs a real number into its posit form.

Posits4.nb 25

x2p[x_ /; positableQ[x]] := Modulei, p, e = 2es-1, y = Abs[x],
Which(* First, take care of the two exception values: *)

y ⩵ 0, 0, (* all 0 bits s *)

y ⩵ ∞, BitShiftLeft[1, nbits - 1], (* 1 followed by all 0 bits *)

True, If[y ≥ 1, (* Northeast quadrant: *)

p = 1;
i = 2; (* Shift in 1s from the right and scale down. *)

While[y ≥ useed i < nbits, {p, y, i} = {2 p + 1, y / useed, i + 1}];
p = 2 p; i++, (* Else, southeast quadrant: *)

p = 0;
i = 1; (* Shift in 0s from the right and scale up. *)

While[y < 1 i ≤ nbits, {y, i} = {y * useed, i + 1}];
If[i ≥ nbits, p = 2;
i = nbits + 1, p = 1;
i++]];

(* Extract exponent bits: *)

While[e > 1 / 2 i ≤ nbits, p = 2 p;
If[y ≥ 2e, y /= 2e;
p++];

e /= 2; i++];
y--; (* Fraction bits; subtract the hidden bit *)

While[y > 0 i ≤ nbits, y = 2 y; p = 2 p + ⌊y⌋; y -= ⌊y⌋; i++];
p *= 2nbits+1-i;
i++;
(* Round to nearest; tie goes to even *)

i = BitAnd[p, 1]; p = ⌊p / 2⌋;
p = Which[

i ⩵ 0, p, (* closer to lower value *)

y ⩵ 1 y ⩵ 0, p + BitAnd[p, 1], (* tie goes to nearest even *)

True, p + 1 (* closer to upper value *)];
Mod[If[x < 0, npat - p, p], npat (* Simulate 2's complement *)]





The x2p function is mostly written with a vocabulary designed to translate easily into low-level
operations in C, or to chip-level circuitry. When you see a line like “p=2p+1”, that would be best
expressed as p=(p<<1)||1 in C; in Mathematica, p=BitOr[BitShiftLeft[p,1],1] seems too
verbose, so we write it with arithmetic that accomplishes the intended bit logic.

4.2 The sigmoid function

Here are some visualizations of the x2p function that also help test its correctness. First, a plot of
the two’s complement integer produced as the argument ranges from –maxpos to maxpos:

26 Posits4.nb

500 1000 1500 2000

-30

-20

-10

10

20

30

As Isaac Yonemoto has observed, this plot is similar to the kind of “sigmoid” function that Machine
Learning requires for deep learning neural networks. It simply needs to be scaled and shifted to
range from 0 to 1. This mapping is trivially achieved by flipping the first bit of the posit and shifting
it right two places, requiring perhaps four transistors of circuitry and easily fitting into a single clock
cycle for a processor. The Machine Learning community presently has two options: It can calcu-
late exponentials like 1

1+ⅇ-x for this, requiring quite a few clock cycles:

-20 -10 10 20
x

0.2

0.4

0.6

0.8

1.0

1

ⅇ-x +1

…or, it can use a piecewise linear approximation, which can lead to problems with the conver-
gence of the training.

Here is the one-cycle low-precision posit function plotted in magenta, and the 1 / (ⅇ-x + 1) function
in green. The slopes match at x = 0.

Posits4.nb 27

4.3 Restricting to the posit vocabulary with the overbar operator

The easiest way to prototype what a posit environment will do is to let Mathematica perform the
operations, but always restrict the numerical vocabulary to what the posit environment supports.
We can define the overbar function to do the restriction for us. Convert the real to the closest posit,
then convert that back to a real to accomplish this; also, we make it a function that can work on a
list of numbers, not just a single number, which will save a lot of code when we do linear algebra.

x_ := p2x[x2p[x]];
SetAttributes[OverBar, Listable]

For example, here is how we can find the nearest posit value of π in a {10, 1} environment:

setpositenv[{10, 1}]
π

N[%]

101

32

3.15625

Think of Mathematica as the “g-layer” where there are no rounding errors, and the overbar opera-
tor as what brings us back to the “u-layer” with unum representation of limited accuracy. This
system will prove quite convenient as a rapid prototype for an actual posit computing environment.

Since x2p and p2x are approximately inverse functions, we can compare plots of y = x with y = x
and get a stair-step function that criss-crosses the y = x line. It looks pretty good on a linear plot
from zero to one:

28 Posits4.nb

x

y = x
y = x

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Test the range around -minpos to minpos, to make sure that exceptions near zero are handled
correctly. Notice that there is no “round to zero” for small numbers, or underflow:

-0.06 -0.04 -0.02 0.02 0.04 0.06

-0.06

-0.04

-0.02

0.02

0.04

0.06

For the range from -maxpos to maxpos, a log-log plot is used to make the graph easier to read.
Let’s actually go from -2 maxpos to 2 maxpos, to check that values never “round” to infinity
(overflow).

Posits4.nb 29

log2x

y = x
y = x

-5 5

-10

-5

5

10

5 Creating an IEEE 754 float environment

5.1 The two parameters that specify a float environment

We can do something very similar for IEEE-type floats that we did to set up the posit environment.
However, unlike IEEE floats, we can have very flexible sizes for the total number of bits, nfbits,
and the number of bits in just the exponent, esize. The number of bits in the fraction, fsize, is
always a constant since there is simply a sign bit, exponent bits, and fraction bits totaling to nfbits.
The values we need for easy number conversion are things like the bias in the exponent, the
smallest subnormal float, the smallest normalized float, the largest finite float, and the largest finite
value that rounds down to the largest finite float instead of overflowing to infinity. (The smallest
finite value that rounds up to the smallest subnormal is half the smallest subnormal; smaller values
underflow to zero.)

setfloatenv[{n_Integer /; n ≥ 4, e_Integer /; e ≥ 2}] :=

{nfbits, esize, fsize} = {n, e, n - e - 1};

bias = 2esize-1 - 1;
smallsubnormal = 21-bias-fsize;
smallnormal = 21-bias;

maxfloat = 2bias 1 +
2fsize - 1

2fsize
;

minroundable = smallsubnormal / 2;

maxroundable = 2bias 1 +
2fsize - 1 / 2

2fsize
;

For example, set an environment for 6 bits per number and 2 exponent bits:

30 Posits4.nb

For example, set an environment for 6 bits per number and 2 exponent bits:

setfloatenv[{6, 2}]

Here are the values set by that environment setting:

{nfbits, esize, fsize, bias, smallsubnormal,
smallnormal, maxfloat, minroundable, maxroundable}

6, 2, 3, 1,
1

8
, 1,

15

4
,

1

16
,
31

8


Notice that we can independently specify a posit environment and a float environment. The vari-
able names do not overlap. This allows us to do side-by-side benchmarking of various algorithms
with floats and with posits.

When floats have only one exponent bit, they act a lot like fixed-point numbers, because all the
finite values are subnormal. That creates difficulties with the IEEE rules; for example, maxfloat
becomes smaller than smallnormal, but the bit pattern for smallnormal is the one IEEE says must
be used to represent infinity! The easiest fix to such craziness is simply to require that esize be 2
or greater. We also need the sign bit, and at least one fraction bit (otherwise there is no distinction
between infinity values and NaN values). So the smallest possible value for nfbits is 4. Here are
the values represented by the 16 possible bit patterns for nfbits = 4, just for fun:

0000 0 “Positive zero”
0001 1

2 smallsubnormal
0010 1 smallnormal
0011 3

2

0100 2
0101 3 maxfloat
0110 ∞ Infinity
0111 NaN Quiet NaN
1000 0 “Negative zero”
1001 -

1
2 -smallsubnormal

1010 -1 -smallnormal
1011 -

3
2

1100 -2
1101 -3 -maxfloat
1110 -∞ Minus infinity
1111 NaN Signalling NaN

5.2 The function that converts a float to its numerical value: f2x
Now we need the equivalent of p2x, which we can call f2x, that takes a bit string representing a
float (the first column in the above table) and returns its mathematical value (the second column).
The routine is more complicated than for posits, because of having five exception cases, which is
one reasons floats consume more circuitry than posits:

Posits4.nb 31

Now we need the equivalent of p2x, which we can call f2x, that takes a bit string representing a
float (the first column in the above table) and returns its mathematical value (the second column).
The routine is more complicated than for posits, because of having five exception cases, which is
one reasons floats consume more circuitry than posits:

Float value =

e = all 1 bits,
f = 0, (-1)s ∞,
f ≠ 0, NaN of some kind,

e = all 0 bits,
f = 0,

s = 0, "Positive zero",
s = 1, "Negative zero",

f ≠ 0, (-1)s×21-bias× f ,

all other e, (-1)s×2e-bias×(1 + f).

where s = the sign bit, e is the integer represented by the exponent bits as an unsigned integer,
and f is the fraction, not including the hidden bit. The following routine extracts the bit fields and
then applies the above formula.

We cannot return “positive zero” and “negative zero” because they are not mathematical quanti-
ties. By IEEE rules, their reciprocals are positive infinity and negative infinity, respectively, yet they
are supposed to test as equal to each other! Other quirky personality traits have been assigned to
the two kinds of zero, such as requiring that the square root of “negative zero” be “negative zero.”
It is little wonder that the handling of these two non-mathematical quantities are such a rich source
of hardware design errors for the floating-point processing unit (FPU) in a processor. Here, we just
assign zero to both cases (the mathematical kind of zero), but later on when figuring out closure
plots, we again have to accommodate IEEE rules for the two concepts that are… zero. Sort of.

f2xf_Integer /; 0 ≤ f < 2nfbits :=
Module{emask = FromDigits[Table[1, esize], 2],

exp, fmask = FromDigits[Table[1, fsize], 2],
frac, sgn, smask = BitShiftLeft[1, nfbits - 1]},

sgn = BitShiftRight[BitAnd[smask, f], nfbits - 1];
exp = BitAnd[BitShiftRight[f, fsize], emask];
frac = BitAnd[fmask, f];
Which
exp ⩵ emask, If[frac ⩵ 0, (-1)sgn × ∞, Indeterminate],
exp ⩵ 0, (-1)sgn × 21-bias × frac  2fsize,
True, (-1)sgn × 2exp-bias × 1 + frac  2fsize

5.3 Converting numbers into floats

We’re almost done; the final step is to create x2f, so that we have a way of converting a value
(possibly NaN or infinite) into the IEEE-style float. A “floatable” value is a real number, or a signed
infinity, or a NaN (which Mathematica calls Indeterminate). Here’s the test for that:

32 Posits4.nb

floatableQ[x_] := (x === Indeterminate x === ∞ x === -∞ x ∈ Reals)

We can use that to guard the conversion function from trying to do something it shouldn’t attempt.

x2f[x_ /; floatableQ[x]] := Module{e = 0, f, sgn, y},
Which
x === Indeterminate¬ floatableQ[x],
FromDigits[Table[1, nfbits], 2], (* NaN exceptions *)

y = Abs[x];
sgn = BitShiftLeft[Boole[x < 0], nfbits - 1];
y ⩵ 0, 0, (* Zero exception *)

y ≥ maxroundable,
BitOr[sgn, BitShiftLeft[FromDigits[Table[1, esize], 2], fsize]],
(* Infinity and overflow exceptions *)

y < smallnormal, BitOr[sgn, Round[y / smallsubnormal]],
(* subnormal exceptions *)

True, (* Else x is normal. Find the exponent and fraction fields. *)

(* At most one of the next two While loops will execute. *)

While[y ≥ 2, y /= 2; e++];
While[y < 1, y *= 2; e--];
(* We now have 1 ≤ y < 2. *)

f = Round(y - 1) * 2fsize;
(* This may round up to 2, so we add f, instead of ORing it. *)

BitOr[sgn, BitShiftLeft[bias + e, fsize]] + f

It may become handy to have a colorcodef operator to see the bit fields of a float, just as we did
with posits.

colorcodef[f_ /; floatableQ[f]] :=
Module[{fbits = IntegerDigits[f, 2, nfbits]},
Row[{ Style[fbits〚1〛,], "", Style[Row[Take[fbits, {2, esize + 1}]],],

"", Row[Take[fbits, -nfbits + esize + 1]]}]]

We last left the setfloatenv setting at {6, 2}. Let’s test the color-coding of a float represented
with 001101, which as a float in this tiny environment represents 1.625:

colorcodef[2^^001101]
N[f2x[2^^001101]]

001101

1.625

5.4 Restriction to a float vocabulary: the underbar operator

Just as we defined an overbar operator to restrict the numerical vocabulary to posits, we can
define the underbar to restrict values to floats:

Posits4.nb 33

Just as we defined an overbar operator to restrict the numerical vocabulary to posits, we can
define the underbar to restrict values to floats:

x_ := f2x[x2f[x]]
SetAttributes[UnderBar, Listable]

Again use π as an example, within the current {6, 2} float environment:

π

N[%]

13

4

3.25

Let’s do two quick graphics tests like the ones done for posits. First, the graph near zero, including
all the subnormal values:

x

y = x
y = x

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

And now the graph from 1 to maxfloat, where we use a log-log plot to better show the zig-zag over
a changing scale:

34 Posits4.nb

x

y = x
y = x

0.5 1.0 1.5

0.5

1.0

1.5

2.0

It is worth noting that for posits, it is always true the x2p[p2x[p]] returns p, whereas for floats, it
is not possible to achieve such a perfect inverse with x2f[f2x[f]] and f. Exceptions occur for
“negative zero” and for the multiple ways of representing NaN.

6 Floats vs. Posits Preview: Accuracy on a 32-bit budget
Before we go through a litany of comparisons of posits and floats, let’s have a pre-game match. If
we evaluate the expression

27/10-ⅇ

π- 2 + 3

67/16

correct to ten decimals, it is 302.8827196⋯. We can compare the accuracy we get with 32-bit
standard IEEE floats and 32-bit posits that have at least as large a dynamic range.

First, try the single-precision float environment, which by the IEEE Standard uses 8 bits for the
exponent:

setfloatenv[{32, 8}]

IEEE 32-bit floats have an unbalanced dynamic range of about 83 decades:

Posits4.nb 35

N[{smallsubnormal, maxfloat}]
Log[10., maxfloat / smallsubnormal]

1.4013 × 10-45, 3.40282 × 1038

83.3853

For each step in the calculation, the Mathematica-type real values are turned into floats, which
means in general they are rounded. The accbenchf and accbenchp functions do not take an
argument, since they rely only on the environment settings. Notice how the underscore and over-
bar notations let us write normal-looking equations, and explicitly round every result to a number
within the float or posit vocabulary.

accbenchf := Modulete = ⅇ, t2710 = 27 / 10, tpi = π,

tr2 = 2 , tr3 = 3 , tnum, t1, tden, t2, t6716, tans,
tnum = t2710 - te;
t1 = tr2 + tr3;
tden = tpi - t1;
t2 = tnum / tden;
t6716 = 67 / 16;
tans = t2t6716;
Print[Style[Row[{"Float answer to ", nfbits - esize, " decimals: "}],

"Text"], N[tans, nfbits - esize]];
PrintStyle["Rounding error in answer: ", "Text"],

N(27 / 10 - ⅇ)  π -  2 + 3 
(67/16)

- tans

Try it out on IEEE Standard 32-bit floats, single precision:

accbenchf

Float answer to 24 decimals: 302.912414550781250000000
Rounding error in answer: -0.0296949

IEEE single precision gives us the answer 302.912⋯, which is off by about 0.0297. We use the
convention of coloring the decimal digits orange that differ from the decimal digits representing the
correct answer. Although single precision floats have a nominal accuracy of about seven decimals,
that accuracy quickly erodes away in this simple expression, and we are left with only three correct
decimals.

Now try posits. The underscores turn to overscores, and the calculation of the denominator tden
has rounding deferred, since posits can sum long lists of numbers in the quire (more about that
later).

36 Posits4.nb

accbenchp := Modulete = ⅇ, t2710 = 27 / 10, tpi = π,

tr2 = 2 , tr3 = 3 , tnum, t1, tden, t2, t6716, tans,

tnum = t2710 - te;
tden = tpi - (tr2 + tr3); (* Posits allow this kind of fused operation *)

t2 = tnum / tden;
t6716 = 67 / 16;
tans = t2t6716;
Print[Style[Row[{"Posit answer with es = ", es, ": "}], "Text"],
N[tans, nbits - es - 9]];

PrintStyle["Rounding error in answer: ", "Text"],

N(27 / 10 - ⅇ)  π -  2 + 3 
(67/16)

- tans, "\n"

Let’s try a range of es values to see where the sweet spot is.

For[i = 0, i ≤ 5, i++, setpositenv[{32, i}]; accbenchp]

Posit answer with es = 0: 302.88171386718750000000
Rounding error in answer: 0.00100579

Posit answer with es = 1: 302.8827819824218750000
Rounding error in answer: -0.0000623271

Posit answer with es = 2: 302.883300781250000000
Rounding error in answer: -0.000581126

Posit answer with es = 3: 302.88231658935546875
Rounding error in answer: 0.000403066

Posit answer with es = 4: 302.8883361816406250
Rounding error in answer: -0.00561653

Posit answer with es = 5: 302.872161865234375
Rounding error in answer: 0.0105578

All of these answers are much more accurate than the float answer! When es = 1, the posit
answer has four more correct decimals for the same number of bits, 302.882781⋯. The error is
smaller than the float error by a factor of almost 500. When es = 3, for which the dynamic range is
almost twice that of floats (144 decades instead of 83), the posits are more accurate by about a
factor of 74.

This “Accuracy on a 32-Bit Budget” example gives a preview of why switching from floats to posits
might be worth the trouble. There may be many applications where 32-bit floats are not quite
accurate enough, forcing programmers to jump all the way to 64-bit floats instead. If 32-bit posits
can achieve more decimals of accuracy, they may allow the use of 32-bit variables and thereby
provide a 2x savings in bandwidth, storage, and the energy and power needed to move the data.

The next section will create two complete number sets with float rules and posit rules, and com-
pare properties of their complete tables for basic arithmetic.

Posits4.nb 37

All of these answers are much more accurate than the float answer! When es = 1, the posit
answer has four more correct decimals for the same number of bits, 302.882781⋯. The error is
smaller than the float error by a factor of almost 500. When es = 3, for which the dynamic range is
almost twice that of floats (144 decades instead of 83), the posits are more accurate by about a
factor of 74.

This “Accuracy on a 32-Bit Budget” example gives a preview of why switching from floats to posits
might be worth the trouble. There may be many applications where 32-bit floats are not quite
accurate enough, forcing programmers to jump all the way to 64-bit floats instead. If 32-bit posits
can achieve more decimals of accuracy, they may allow the use of 32-bit variables and thereby
provide a 2x savings in bandwidth, storage, and the energy and power needed to move the data.

The next section will create two complete number sets with float rules and posit rules, and com-
pare properties of their complete tables for basic arithmetic.

7 Posits versus IEEE-type Floats: A Metric-Based Study

7.1 Why Regime Bits increase Accuracy

It is obvious that regime bits are a sort of “super-exponent” that amplify the dynamic range of
posits compared to floats. What is less obvious is that they also increase accuracy by allowing
more bits “left over” to express the fraction part of a number.

As an example, suppose we have 16 bits and wish to express the number 10000. Half-precision
IEEE floats (5-bit exponent field) can do that without rounding:

setfloatenv[{16, 5}]
10000

10000

As a float, 10000 = 213×1 +
113
512

. That means we need an exponent that ranges from 2-14 to 214

for normalized floats, which requires an exponent with at least five bits. If we instead represent the
number as a 16-bit posit, consider how 213 would be expressed with different values of es, leaving
off the all-zero fraction bits for clarity:

es 213

0 111111111111110
1 111111101
2 1111001
3 110101
4 101101
5 1001101
6 10001101
7 100001101
etc.

Those are all ways of expressing the integer 13 as the bit shift (scaling by a power of 2). The
number of regime bits needed to express that integer repeatedly drops by about a factor of two
initially, and then when it hits the minimum two-bit 10 pattern, the exponent bits take over the job
and the total number of exponent bits ramps up linearly. Hence, there is a "sweet spot" if we
intend to be dealing a lot with quantities near 10000 in magnitude. Only es = 3 or es = 4 allow
enough fraction bits to let 10000 be represented exactly:

38 Posits4.nb

es = 0 0111111111111110→+111111111111110 closest value to 10000: 8192
es = 1 0111111101001110→+111111101001110 closest value to 10000: 9984
es = 2 0111100100111000→+111100100111000 closest value to 10000: 9984
es = 3 0110101001110001→+110101001110001 closest value to 10000: 10000
es = 4 0101101001110001→+101101001110001 closest value to 10000: 10000
es = 5 0100110100111000→+100110100111000 closest value to 10000: 9984
es = 6 0100011010011100→+100011010011100 closest value to 10000: 9984
es = 7 0100001101001110→+100001101001110 closest value to 10000: 9984
es = 8 0100000110100111→+100000110100111 closest value to 10000: 9984

For es = 3, the dynamic range goes far beyond what 16-bit floats can express and is probably
overkill for most low-precision applications:

setpositenv[{16, 3}];
N[{minpos, maxpos}]
Log[10., maxpos / minpos]

1.92593 × 10-34, 5.1923 × 1033

67.4307

That’s enough to do a decent job of representing Avogadro’s number, in case anyone wants to do
low-accuracy but very quick chemistry calculations on molar quantities!

N6.022 × 1023, 3

6.04 × 1023

If someone is using posit arithmetic in a field-programmable gate array (FPGA) for a particular
embedded application where it need not be compatible with a standard storage format, such as
signal processing or machine learning, there is no reason why a posit cannot have, say, 23 bits
with an es of 6. However, we want to make the transition away from the outdated 1985 float format
as painless as possible, which means standardizing the es values for 16-, 32-, 64-, 128-, and 256-
bit posits. An ambitious hardware engineer might make the es value configurable, but then there is
the issue of language support for the many different data types. Ideally, a C program written many
years ago that uses float and double keywords could simply be recompiled to use 32-bit and 64-
bit posits, with a different math library (the libm.h include file), and everything should just work.
And produce more accurate answers.

7.2 Should we match IEEE float dynamic ranges?

In the current (2008) version of the IEEE 754 standard, there are five binary float sizes: 16, 32, 64,
128, and 256 bits. For some users, it might be important that posits do as well or better than floats
for dynamic range, lest they appear to be sacrificing dynamic range in favor of accuracy.

Here is a table of the IEEE floats and the same size posits, with es chosen to make the dynamic
range better for sizes 16 and 32 bits, and very nearly as large for 64, 128, and 256 bits. It may be
important to improve the dynamic ranges for 16-bit and 32-bit posits if they are to be used as
replacements, say, for 32-bit and 64-bit floats, respectively.

Posits4.nb 39

In the current (2008) version of the IEEE 754 standard, there are five binary float sizes: 16, 32, 64,
128, and 256 bits. For some users, it might be important that posits do as well or better than floats
for dynamic range, lest they appear to be sacrificing dynamic range in favor of accuracy.

Here is a table of the IEEE floats and the same size posits, with es chosen to make the dynamic
range better for sizes 16 and 32 bits, and very nearly as large for 64, 128, and 256 bits. It may be
important to improve the dynamic ranges for 16-bit and 32-bit posits if they are to be used as
replacements, say, for 32-bit and 64-bit floats, respectively.

Size,
bits

Float
exponent size

Float
dynamic range

Posit
es value

Posit
dynamic range

16 5 3.×10-8 to 7.×104 1 9.×10-10 to 1.×109

32 8 7.×10-46 to 3.×1038 3 2.×10-75 to 5.×1074

64 11 2.×10-324 to 2.×10308 4 4.×10-304 to 3.×10303

128 15 3.×10-4966 to 1.×104932 7 3.×10-4894 to 3.×104893

256 19 1.×10-78984 to 2.×1078913 10 1.×10-78605 to 9.×1078604

These exponent sizes for floats do not follow any mathematical pattern, but reflect intensely-
argued compromises by the IEEE committee. Trying to match the 1985-era choices of the IEEE
committee results in an equally inexplicable set of es values for the posits. Frankly, the reason for
such enormous dynamic ranges is that they were trying to save transistors instead of provide what
users really need. Multiplying and dividing floats only requires integer addition and subtraction of
the exponent field, but the fraction field needs an integer multiplier, and the cost of that can grow
almost as the square of the number of fraction bits. So while almost no one strays outside the
range 10-13 to 1013 in real applications, the IEEE 754 Standard proudly lets you go from about
10-78984 to 1078913. Even astrophysicists don’t know what to do with dynamic ranges that huge.
Ironically, whatever those decision-makers saved in the size of the integer multiplier, they more
than made up for it with a long list of burdensome exception cases that consume plenty of logic
(like negative zero, subnormal exceptions, NaN and infinity bit patterns, multiple rounding modes,
and the requirement of processor flags for overflow, underflow, and inexact results).

For the moment, suppose the IEEE choices are justified. The posit method of expressing the
power-of-two scaling factor frees up more bits for the fraction over a wide range, giving a greater
maximum accuracy for the above choices of es:

40 Posits4.nb

Size,
bits

Float maximum
accuracy, bits

Posit maximum
accuracy, bits

Posit advantage,
bits

Range where
posit accuracy

is ≥ float accuracy

16 11 13 2
1

64
to 64

32 24 27 3 2.×10-10 to 4.×109

64 53 58 5 1.×10-29 to 8.×1028

128 113 119 6 2.×10-270 to 5.×10269

256 237 244 7 9×10-2467 to 1.1×102466

So even if we buy into the transistor-pinching choices of IEEE 754, posits easily beat floats for
accuracy.

What if we take a more reasoned approach, and simply increment the es value every time we
double the number of bits of precision? Every such increment results in a fourfold increase in the
dynamic range, which certainly should be ample. For purposes of comparison with 8-bit posits,
let's imagine a "quarter-precision" IEEE float with 3 exponent bits so we can include that size in
the table.

Size,
bits

Float
exponent size

Float
dynamic range

Posit
es value

Posit
dynamic range

8 3 0.008 to 2.×101 0 0.008 to 1.×102

16 5 3.×10-8 to 7.×104 1 9.×10-10 to 1.×109

32 8 7.×10-46 to 3.×1038 2 5.×10-38 to 2.×1037

64 11 2.×10-324 to 2.×10308 3 2.×10-152 to 5.×10151

128 15 3.×10-4966 to 1.×104932 4 2.×10-612 to 5.×10611

256 19 1.×10-78984 to 2.×1078913 5 4.×10-2457 to 3.×102456

Here is the posit accuracy advantage if we do not try to match the oversized dynamic ranges of
IEEE and simply use 0-1-2-3-4-5 as the es sizes.

Posits4.nb 41

Size,
bits

Float maximum
accuracy, bits

Posit maximum
accuracy, bits

Posit advantage,
bits

Range where
posit accuracy

is ≥ float accuracy

8 5 6 1
1
4

to 4

16 11 13 2
1

64
to 64

32 24 28 4 1.×10-6 to 1.×106

64 53 59 6 1.×10-17 to 7.×1016

128 113 122 9 7.×10-49 to 1.×1048

256 237 249 12 6.×10-126 to 2.×10125

Somehow, that looks a lot more sane. Notice that for a 32-bit posit, the four extra accuracy bits
would make them comparable to an old-fashioned 36-bit float from the days before IBM introduced
its System 360 in the 1960s. It will take some time to get sufficient feedback from the HPC commu-
nity to decide this issue, but right now my vote is for the second set of es settings. The es value
should simply be

es = log2(nbits) - 3

7.3 Constructing the low-precision sets to compare

Let’s construct some eight-bit “quarter precision” floats that follow IEEE rules, and then an eight-bit
posit with a comparable dynamic range. We use such low precision to make it practical to find the
entire set of values and work with tables formed from pairs of them, which will have 65536 entries.
Here is what a quarter-precision IEEE-style float might look like (with a 4-bit exponent, instead of
the 3-bit exponent used in the tables in the previous section):

s

sign
bit

exponent
bits

e1 e2 e3 e4

fraction
bits

f1 f2 f3

Set the float environment to 8-bit values with 4-bit exponent fields:

setfloatenv[{8, 4}]

The floatfix function turns counting integers into two sets of integers that puts the floats repre-
sented by the bit strings into increasing order.

42 Posits4.nb

The floatfix function turns counting integers into two sets of integers that puts the floats repre-
sented by the bit strings into increasing order.

floatfix[i_Integer] := Ifi < 2nfbits-1, 2nfbits - i - 1, i - 2nfbits-1

The float8 list is the set of floats represented by every possible bit pattern. Printing the list with
TableForm is a trick to make the fractions automatically typeset with a smaller font size than the
integers.

float8 = Tablef2x[floatfix[f]], f, 0, 2nfbits - 1;
Table[TableForm[{float8〚i〛}], {i, 1, Length[float8]}]

 Indeterminate , Indeterminate , Indeterminate , Indeterminate ,

Indeterminate , Indeterminate , Indeterminate , -∞ , -240 , -224 , -208 ,
-192 , -176 , -160 , -144 , -128 , -120 , -112 , -104 , -96 , -88 , -80 ,
-72 , -64 , -60 , -56 , -52 , -48 , -44 , -40 , -36 , -32 , -30 , -28 , -26 ,
-24 , -22 , -20 , -18 , -16 , -15 , -14 , -13 , -12 , -11 , -10 , -9 , -8 ,

- 15

2
, -7 , - 13

2
, -6 , - 11

2
, -5 , - 9

2
, -4 , - 15

4
, - 7

2
, - 13

4
, -3 , - 11

4
, - 5

2
,

- 9

4
, -2 , - 15

8
, - 7

4
, - 13

8
, - 3

2
, - 11

8
, - 5

4
, - 9

8
, -1 , - 15

16
, - 7

8
, - 13

16
, - 3

4
,

- 11

16
, - 5

8
, - 9

16
, - 1

2
, - 15

32
, - 7

16
, - 13

32
, - 3

8
, - 11

32
, - 5

16
, - 9

32
, - 1

4
, - 15

64
,

- 7

32
, - 13

64
, - 3

16
, - 11

64
, - 5

32
, - 9

64
, - 1

8
, - 15

128
, - 7

64
, - 13

128
, - 3

32
, - 11

128
,

- 5

64
, - 9

128
, - 1

16
, - 15

256
, - 7

128
, - 13

256
, - 3

64
, - 11

256
, - 5

128
, - 9

256
, - 1

32
,

- 15

512
, - 7

256
, - 13

512
, - 3

128
, - 11

512
, - 5

256
, - 9

512
, - 1

64
, - 7

512
, - 3

256
, - 5

512
,

- 1

128
, - 3

512
, - 1

256
, - 1

512
, 0 , 0 , 1

512
, 1

256
, 3

512
, 1

128
,

5

512
, 3

256
,

7

512
,

1

64
, 9

512
,

5

256
, 11

512
, 3

128
, 13

512
,

7

256
, 15

512
, 1

32
, 9

256
,

5

128
, 11

256
, 3

64
, 13

256
,

7

128
, 15

256
, 1

16
, 9

128
,

5

64
, 11

128
, 3

32
, 13

128
,

7

64
, 15

128
, 1

8
, 9

64
,

5

32
, 11

64
, 3

16
,

13

64
,

7

32
, 15

64
, 1

4
, 9

32
,

5

16
, 11

32
, 3

8
, 13

32
,

7

16
, 15

32
, 1

2
, 9

16
,

5

8
, 11

16
, 3

4
,

13

16
,

7

8
, 15

16
, 1 , 9

8
,

5

4
, 11

8
, 3

2
, 13

8
,

7

4
, 15

8
, 2 , 9

4
,

5

2
, 11

4
, 3 , 13

4
,

7

2
, 15

4
, 4 , 9

2
, 5 , 11

2
, 6 , 13

2
, 7 , 15

2
, 8 , 9 , 10 , 11 , 12 , 13 , 14 ,

15 , 16 , 18 , 20 , 22 , 24 , 26 , 28 , 30 , 32 , 36 , 40 , 44 , 48 , 52 ,
56 , 60 , 64 , 72 , 80 , 88 , 96 , 104 , 112 , 120 , 128 , 144 , 160 , 176 ,
192 , 208 , 224 , 240 , ∞ , Indeterminate , Indeterminate , Indeterminate ,

Indeterminate , Indeterminate , Indeterminate , Indeterminate

That set has 256 elements in it, but 14 of the elements express NaN (Indeterminate). Also,
notice that the value 0 occurs twice in the above set because of “negative zero.” The smallest
positive value for the floats is 1 /512 and the largest value is 240, giving them a dynamic range of
about five decades.

Now construct posits with nbits = 8. If we choose es = 1, notice the values of minpos and maxpos
exceed the dynamic range of the floats:

Posits4.nb 43

setpositenv[{8, 1}]
{minpos, maxpos}


1

4096
, 4096

Again generate the table as if we had 2’s complement integers, from most negative to most posi-
tive. The positfix function makes an adjustment like that made by floatfix, to put the posits
into increasing order.

positfix[i_Integer] := If[i < npat / 2, i + npat / 2, i - npat / 2]
posit8 = Table[p2x[positfix[j]], {j, 0, npat - 1}];
TableTableFormposit8〚i〛, {i, 1, npat}

 ComplexInfinity , -4096 , -1024 , -512 , -256 , -192 , -128 , -96 , -64 ,

-56 , -48 , -40 , -32 , -28 , -24 , -20 , -16 , -15 , -14 , -13 , -12 ,

-11 , -10 , -9 , -8 , - 15

2
, -7 , - 13

2
, -6 , - 11

2
, -5 , - 9

2
, -4 , - 31

8
,

- 15

4
, - 29

8
, - 7

2
, - 27

8
, - 13

4
, - 25

8
, -3 , - 23

8
, - 11

4
, - 21

8
, - 5

2
, - 19

8
, - 9

4
,

- 17

8
, -2 , - 31

16
, - 15

8
, - 29

16
, - 7

4
, - 27

16
, - 13

8
, - 25

16
, - 3

2
, - 23

16
, - 11

8
, - 21

16
,

- 5

4
, - 19

16
, - 9

8
, - 17

16
, -1 , - 31

32
, - 15

16
, - 29

32
, - 7

8
, - 27

32
, - 13

16
, - 25

32
, - 3

4
,

- 23

32
, - 11

16
, - 21

32
, - 5

8
, - 19

32
, - 9

16
, - 17

32
, - 1

2
, - 31

64
, - 15

32
, - 29

64
, - 7

16
, - 27

64
,

- 13

32
, - 25

64
, - 3

8
, - 23

64
, - 11

32
, - 21

64
, - 5

16
, - 19

64
, - 9

32
, - 17

64
, - 1

4
, - 15

64
, - 7

32
,

- 13

64
, - 3

16
, - 11

64
, - 5

32
, - 9

64
, - 1

8
, - 15

128
, - 7

64
, - 13

128
, - 3

32
, - 11

128
, - 5

64
,

- 9

128
, - 1

16
, - 7

128
, - 3

64
, - 5

128
, - 1

32
, - 7

256
, - 3

128
, - 5

256
, - 1

64
, - 3

256
,

- 1

128
, - 3

512
, - 1

256
, - 1

512
, - 1

1024
, - 1

4096
, 0 , 1

4096
, 1

1024
, 1

512
, 1

256
, 3

512
,

1

128
, 3

256
, 1

64
,

5

256
, 3

128
,

7

256
, 1

32
,

5

128
, 3

64
,

7

128
, 1

16
, 9

128
,

5

64
, 11

128
,

3

32
, 13

128
,

7

64
, 15

128
, 1

8
, 9

64
,

5

32
, 11

64
, 3

16
, 13

64
,

7

32
, 15

64
, 1

4
, 17

64
, 9

32
,

19

64
,

5

16
, 21

64
, 11

32
, 23

64
, 3

8
, 25

64
, 13

32
, 27

64
,

7

16
, 29

64
, 15

32
, 31

64
, 1

2
, 17

32
, 9

16
,

19

32
,

5

8
, 21

32
, 11

16
, 23

32
, 3

4
, 25

32
, 13

16
, 27

32
,

7

8
, 29

32
, 15

16
, 31

32
, 1 , 17

16
, 9

8
,

19

16
,

5

4
, 21

16
, 11

8
, 23

16
, 3

2
, 25

16
, 13

8
, 27

16
,

7

4
, 29

16
, 15

8
, 31

16
, 2 , 17

8
, 9

4
,

19

8
,

5

2
, 21

8
, 11

4
, 23

8
, 3 , 25

8
, 13

4
, 27

8
,

7

2
, 29

8
, 15

4
, 31

8
, 4 , 9

2
, 5 ,

11

2
, 6 , 13

2
, 7 , 15

2
, 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 20 , 24 ,

28 , 32 , 40 , 48 , 56 , 64 , 96 , 128 , 192 , 256 , 512 , 1024 , 4096

For posits, there are no wasted cases. All bit patterns represent unique mathematical quantities.
This relates to another violation of mathematics committed by IEEE floats. If a = b, then for any
function f we expect f (a) = f (b). But the IEEE rules send us down the rabbit hole by declaring
positive and negative zero to be numerically equal, yet 1 /x is –∞ for “negative zero” and +∞ for
“positive zero.” Which implies that negative infinity is the same as positive infinity. Gulp.

For posits, there are no wasted cases.

44 Posits4.nb

7.4 A careful definition of “decimal accuracy”

Like so many things in numerical analysis, we have gotten accustomed to some concepts that are
widely accepted but rather sloppy in their logic. The way we measure “error” of various types is
such a concept. For instance, this is a widely-accepted definition:

absolute error = xcomputed - xexact

That seems reasonable at first glance; if the values are identical, their difference is zero and there
is no error. But if a calculation produces 315 instead of 314, doesn’t the error look very similar to
returning 3.15 instead of 3.14? A number system designed for real numbers usually spans many
decades of dynamic range, but simply subtracting numbers looks more like an integer or fixed-
point way of looking at inaccuracy.

In an attempt to repair this contradiction, the relative error of a computed value is usually defined
as

relative error =
xcomputed - xexact

xexact

Here are a couple reasons you should be dissatisfied with this definition. For one, if you compute
–1 when the correct answer is 100, then the relative error would only be 1.01. If you don’t even
know which half of the projective real circle a result is on, then you know essentially nothing about
the answer since the sign is the most significant part of a number. An error formula should refuse
to function in such cases. Even declaring the relative error to be infinite is too flattering.

For another, the formula is quite different for numbers and their inverses. Suppose
xcomputed = 0.001 but xexact = 0.0001. Then the relative error is 9. But if we were instead computing
the reciprocals of the numbers, the relative error would take xcomputed = 1000 and xexact = 10000 as
inputs, and the above formula would reassure us that the relative error is only 0.9. It makes no
sense that an answer can be made to look more accurate simply by taking the reciprocal. If you
knew the miles per gallon of a car with a relative error of 0.1, would it not bother you that you know
the gallons per mile of the same car with a relative error of 0.2? That’s why it is more common to
say something is accurate to some percentage, like “within five percent” which is certainly better
because it invokes ratios instead of differences.

Engineers have long had a solution when comparing numbers with ratios, which is to use decibels.
A ratio of 10 is 10 decibels (dB). A ratio of 1 dB means the ratio is 101/10 = 1.2589⋯. As with
decibels, we should be looking at the difference of the logarithms of the numbers, which is the
same as the logarithm of their ratio:

decimal error ≡ log10 xcomputed - log10 (xexact) = log10

xcomputed

xexact
.

Notice that the absolute value makes xcomputed and xexact interchangeable in the above definition.
Also notice that it produces the same result whether you use xcomputed and xexact as inputs, or
1xcomputed and 1 /xexact. So that looks like a mathematically sound definition.

We could achieve those properties with any base logarithm, but we choose base 10 because it
measures the error in decades, the same human-friendly way we measure dynamic range. Recall
the above example of xcomputed = 0.001 but xexact = 0.0001; the decimal error is 1. That means it’s a
decade off.

The decimal error can be used to define decimal accuracy. Accuracy is the inverse of error. If we
want to know the number of decimals of accuracy, we again take the log base 10.

Posits4.nb 45

Notice that the absolute value makes xcomputed and xexact interchangeable in the above definition.
Also notice that it produces the same result whether you use xcomputed and xexact as inputs, or
1xcomputed and 1 /xexact. So that looks like a mathematically sound definition.

We could achieve those properties with any base logarithm, but we choose base 10 because it
measures the error in decades, the same human-friendly way we measure dynamic range. Recall
the above example of xcomputed = 0.001 but xexact = 0.0001; the decimal error is 1. That means it’s a
decade off.

The decimal error can be used to define decimal accuracy. Accuracy is the inverse of error. If we
want to know the number of decimals of accuracy, we again take the log base 10.

decimal accuracy ≡ log10
1

decimal error
= -log10 log10

xcomputed

xexact
.

Here is the Mathematica function, which uses the above formula but also handles exceptional
input values. If either input is NaN, then the accuracy is NaN. It also produces NaN if the numbers
are of opposite sign. Otherwise, if the input values are identical, the accuracy is ∞. If only one
input is ∞ or only one input is 0, the accuracy is –∞, because on a logarithmic scale, both 0 and ∞
are infinitely far away from any nonzero real number. This is why it is a disaster to “round” large
results to infinity (overflow) or small results to zero (underflow).

decacc[x_, y_] := Which[
x === Indeterminate y === Indeterminate, Indeterminate,
x === y, ∞,
x === ComplexInfinity y === ComplexInfinity, Indeterminate,
(x < 0 y > 0) (x > 0 y < 0), Indeterminate,
True, N[-Log[10, Abs[Log[10, x / y]]]]]

If the numbers are a decade apart, the accuracy is zero; we don’t even know the order of magni-
tude of the result:

decacc[23, 230]

0.

Engineers should like this property of the definition: Here is the decimal accuracy if an answer is
off by 1 dB:

decacc1, 101/10

1.

If an answer is off by 0.1 dB, then we have 2 decimals of accuracy; off by 0.01 dB means 3 deci-
mals of accuracy, and so on.

We can also analyze the accuracy of a number system. Let’s just study three consecutive values
in the float8 set: {15/16, 1, 9/8}. We know that

Values in [15 /16, 31 /32) round to 15 /16.

Values in [31/32,17/16] round to 1.

Values in (17/16,9/8] round to 9/8.

If we happen to have a value that is exactly 15/16, 1, or 9/8, then the decimal accuracy is infinite.
In between those values, decimal accuracy dips to a minimum.

46 Posits4.nb

If an answer is off by 0.1 dB, then we have 2 decimals of accuracy; off by 0.01 dB means 3 deci-
mals of accuracy, and so on.

We can also analyze the accuracy of a number system. Let’s just study three consecutive values
in the float8 set: {15/16, 1, 9/8}. We know that

Values in [15 /16, 31 /32) round to 15 /16.

Values in [31/32,17/16] round to 1.

Values in (17/16,9/8] round to 9/8.

If we happen to have a value that is exactly 15/16, 1, or 9/8, then the decimal accuracy is infinite.
In between those values, decimal accuracy dips to a minimum.

0.95 1.00 1.05 1.10
Real value x

1

2

3

4

Decimal accuracy
after rounding x

Notice the slight discontinuity at the two minima; that’s because of the difference between the
geometric mean and the arithmetic mean. The cusps are at the halfway points, 15/16+1

2
= 0.96875

and 1+9/8
2

= 1.0625, but those are not the places where the decimal error, defined as a logarithmic

distance, is minimized. That point would happen at (15 /16)×1 = 0.96824⋯ and

1×(9 /8) = 1.0606⋯, which at this extremely low precision is a large enough discontinuity to
see in the graph, barely. In 16-bit precision or greater, you really wouldn’t be able to see it. If it
weren’t so computationally expensive, it would be a tiny bit better if all rounding were done accord-
ing to which side of the geometric mean a result falls, not the arithmetic mean.

Notice, though, that posits do round using the geometric mean, if the rounded bits are exponent
bits. That only happens at the extremes of the range, but it helps increase decimal accuracy. For
instance, in the 8-bit posit set under examination here, the three largest positive reals are 512,
1024, and 4096. Here is what posit decimal accuracy looks like for x in that range:

Posits4.nb 47

500 1000 1500 2000 2500 3000 3500 4000
Real value x

0.5

1.0

1.5

2.0

2.5

Decimal accuracy
after rounding x

The geometric mean of 512 and 1024 is 724.077⋯ but normal linear rounding of the fraction part
uses the midpoint, 768, as the switchover point, creating a subtle but visible discontinuity. The
geometric mean between 1024 and 4096, on the other hand, is exactly 2048 and that is also what
posits use for the switchover point. Here is a decimal accuracy plot for the positive posits:

-10 -5 0 5 10
Log2(x)

0.5

1.0

1.5

2.0

2.5

3.0
Decimal Accuracy for {8,1} Posits

The tapered precision is very clear. Worst-case precision is highest where the most common
numbers are, in the center of the range of possible exponents. Here is the equivalent plot for the 8-
bit floats we are testing here:

48 Posits4.nb

-10 -5 0 5 10
Log2(x)

0.5

1.0

1.5

2.0

2.5

3.0
Decimal Accuracy for {8,4} Floats

The dynamic range is visibly smaller than for posits, and accuracy is tapered only on the left where
the denormalized float exceptions happen.

Those graphs are thorough in showing the accuracy of the entire number system over the dynamic
range, but the vertical spikes at the exact points make it difficult to compare the two systems. Let’s
instead be pessimistic and look at the worst case decimal accuracy for each point in the number
set. The following graph shows just the bottom of each trough, allowing us to show both posits and
floats on the same plot:

At higher precisions, the jaggedness is less pronounced, and the posit decimal accuracy is a
symmetrical triangular outline that peaks in the center; the float pattern always forms a rectangle
with a ramp on the left for the denormalized floats. The posits have higher accuracy than floats in
the center, and less near the underflow and overflow regions. The larger the es value, the broader
the triangle that describes posit accuracy, and at some point it becomes so broad that the entire
accuracy curve has less accuracy than the floats.

For the 8-bit posits and floats, posits have superior accuracy for numbers with absolute value
between 1/4 and 4, and equal or superior accuracy for numbers with absolute value between 1/16
and 16.

Posits4.nb 49

7.5 The Morris Floats

We now have enough mathematical machinery to show what happened to the 1971 tapered
precision scheme. Almost half a century ago, Robert Morris proposed it in his paper, “Tapered
Floating Point: A New Floating-Point Representation.” It is worth studying his proposal and compar-
ing it with posit arithmetic using the tools presented so far, particularly since those familiar with the
literature on alternatives to floats remember that there were attempts to create tapered precision
early on. We know that the Morris approach never caught on or influenced the IEEE 754 Standard
committee. Perhaps we can figure out why it didn’t.

Morris suggests an additional field, the G field, that describes how many bits are in the exponent.
The bits in the G field represent an integer to which we add an offset, so two G bits could repre-
sent, say, an exponent of size 1, 2, 3, or 4. Or it could represent 3, 4, 5, or 6. He describes the
need for

◼ The G field for the number of exponent bits
◼ The sign bit of the exponent
◼ The E field for the exponent bits
◼ The sign bit of the fraction
◼ The F field for the remaining bits, a fraction field where the hidden bit is always 1 (no

subnormals).

The claim in the 1971 paper is that this allows more accuracy bits (fraction bits) for values with
small exponents, yet more dynamic range than a system that only has a signed exponent and a
signed fraction. That sounds familiar! The author notes that there can be multiple ways to repre-
sent a particular value with this system (redundant bit patterns) and he proposes the convention
that the representation with the smallest value stored in G is the one to use; the other bit patterns
become meaningless under the system.

A Morris float looks like the following, with five sub-fields:

e±

sign
G bits

g1 g2 ⋯ggs

exponent

e1 e2 ⋯ eG f ±

sign
fraction

f1 f2 ⋯ fk

n

Notice that we only show black dividing lines between the G bits and the exponent sign bit, and
between the exponent sign bit and the exponent bits. That’s to remind us that the other partition
locations vary according to the contents of G.

We are using nfbit for the number of bits in a standard float, so let’s use nmbit for the number in a
Morris float. We can use gs as the size of the G field, and define a Morris float environment with
setmorrisenv:

50 Posits4.nb

setmorrisenv[{n_Integer /; n ≥ 4, gsize_Integer /; gsize ≥ 1}] :=

{nmbit, gs} = {n, gsize};

minmorris = 2-22gs-1;

maxmorris = 222gs-1 1 +
2n-2gs-gs-2 - 1

2n-2gs-gs-2
;

For example, set an environment for 8 bits per number and 1 gs bit:

setmorrisenv[{8, 1}]
{nmbit, gs, minmorris, maxmorris}

8, 1,
1

8
, 15

There’s an early warning about this scheme. The dynamic range is awfully small. In fact, the
dynamic range would have been larger if we had used the 8 bits to represent unsigned integers
from -128 to 127.

Now we need the equivalent of f2x, which we can call m2x, that follows the rules specified by
Morris.

m2xm_Integer /; 0 ≤ m < 2nmbit :=
Module{emask, esgn, exp, fmask, frac, fsgn, fs, g},
g = BitShiftRight[m, nmbit - gs];
esgn = BitAnd[1, BitShiftRight[m, nmbit - gs - 1]];
emask = FromDigits[Table[1, g + 1], 2];
fs = nmbit - gs - g - 3;
fsgn = BitAnd[1, BitShiftRight[m, fs]];
exp = BitAnd[BitShiftRight[m, fs + 1], emask];
frac = BitAnd[FromDigits[Table[1, fs], 2], m];
Ifm ⩵ 0, 0, (-1)fsgn × 2(-1)esgn×exp

× 1 + frac  2fs

Apologies to the reader for what follows, but it is important to see the kind of chaos that results
from simply adding a field that describes the exponent size:

Posits4.nb 51

morris8 = Tablem2x[i], i, 0, 2nmbit - 1

0,
17

16
,
9

8
,
19

16
,
5

4
,
21

16
,
11

8
,
23

16
,
3

2
,
25

16
,
13

8
,
27

16
,
7

4
,
29

16
,
15

8
,
31

16
, -1, -

17

16
,

-
9

8
, -

19

16
, -

5

4
, -

21

16
, -

11

8
, -

23

16
, -

3

2
, -

25

16
, -

13

8
, -

27

16
, -

7

4
, -

29

16
, -

15

8
,

-
31

16
, 2,

17

8
,
9

4
,
19

8
,
5

2
,
21

8
,
11

4
,
23

8
, 3,

25

8
,
13

4
,
27

8
,
7

2
,
29

8
,
15

4
,
31

8
, -2,

-
17

8
, -

9

4
, -

19

8
, -

5

2
, -

21

8
, -

11

4
, -

23

8
, -3, -

25

8
, -

13

4
, -

27

8
, -

7

2
, -

29

8
, -

15

4
,

-
31

8
, 1,

17

16
,
9

8
,
19

16
,
5

4
,
21

16
,
11

8
,
23

16
,
3

2
,
25

16
,
13

8
,
27

16
,
7

4
,
29

16
,
15

8
,
31

16
,

-1, -
17

16
, -

9

8
, -

19

16
, -

5

4
, -

21

16
, -

11

8
, -

23

16
, -

3

2
, -

25

16
, -

13

8
, -

27

16
, -

7

4
, -

29

16
,

-
15

8
, -

31

16
,
1

2
,
17

32
,

9

16
,
19

32
,
5

8
,
21

32
,
11

16
,
23

32
,
3

4
,
25

32
,
13

16
,
27

32
,
7

8
,
29

32
,
15

16
,

31

32
, -

1

2
, -

17

32
, -

9

16
, -

19

32
, -

5

8
, -

21

32
, -

11

16
, -

23

32
, -

3

4
, -

25

32
, -

13

16
, -

27

32
, -

7

8
,

-
29

32
, -

15

16
, -

31

32
, 1,

9

8
,
5

4
,
11

8
,
3

2
,
13

8
,
7

4
,
15

8
, -1, -

9

8
, -

5

4
, -

11

8
, -

3

2
, -

13

8
,

-
7

4
, -

15

8
, 2,

9

4
,
5

2
,
11

4
, 3,

13

4
,
7

2
,
15

4
, -2, -

9

4
, -

5

2
, -

11

4
, -3, -

13

4
, -

7

2
,

-
15

4
, 4,

9

2
, 5,

11

2
, 6,

13

2
, 7,

15

2
, -4, -

9

2
, -5, -

11

2
, -6, -

13

2
, -7, -

15

2
, 8,

9, 10, 11, 12, 13, 14, 15, -8, -9, -10, -11, -12, -13, -14, -15, 1,
9

8
,
5

4
,

11

8
,
3

2
,
13

8
,
7

4
,
15

8
, -1, -

9

8
, -

5

4
, -

11

8
, -

3

2
, -

13

8
, -

7

4
, -

15

8
,
1

2
,

9

16
,
5

8
,

11

16
,
3

4
,
13

16
,
7

8
,
15

16
, -

1

2
, -

9

16
, -

5

8
, -

11

16
, -

3

4
, -

13

16
, -

7

8
, -

15

16
,
1

4
,

9

32
,

5

16
,

11

32
,
3

8
,
13

32
,

7

16
,
15

32
, -

1

4
, -

9

32
, -

5

16
, -

11

32
, -

3

8
, -

13

32
, -

7

16
, -

15

32
,
1

8
,

9

64
,

5

32
,
11

64
,

3

16
,
13

64
,

7

32
,
15

64
, -

1

8
, -

9

64
, -

5

32
, -

11

64
, -

3

16
, -

13

64
, -

7

32
, -

15

64


A discrete plot of the values represented by ordered bit strings gives us the second clue about the
shortcomings of the Morris proposal:

52 Posits4.nb

ListPlot[morris8, PlotStyle →]

50 100 150 200 250

-5

5

What a crazy ordering this format produces! But here is the crucial failure of the Morris approach
to tapered precision. Sort the values and get rid of the many redundant representations:

morris8s = Union[morris8]

-15, -14, -13, -12, -11, -10, -9, -8, -
15

2
, -7, -

13

2
, -6, -

11

2
, -5, -

9

2
, -4,

-
31

8
, -

15

4
, -

29

8
, -

7

2
, -

27

8
, -

13

4
, -

25

8
, -3, -

23

8
, -

11

4
, -

21

8
, -

5

2
, -

19

8
, -

9

4
,

-
17

8
, -2, -

31

16
, -

15

8
, -

29

16
, -

7

4
, -

27

16
, -

13

8
, -

25

16
, -

3

2
, -

23

16
, -

11

8
, -

21

16
, -

5

4
,

-
19

16
, -

9

8
, -

17

16
, -1, -

31

32
, -

15

16
, -

29

32
, -

7

8
, -

27

32
, -

13

16
, -

25

32
, -

3

4
, -

23

32
, -

11

16
,

-
21

32
, -

5

8
, -

19

32
, -

9

16
, -

17

32
, -

1

2
, -

15

32
, -

7

16
, -

13

32
, -

3

8
, -

11

32
, -

5

16
, -

9

32
, -

1

4
,

-
15

64
, -

7

32
, -

13

64
, -

3

16
, -

11

64
, -

5

32
, -

9

64
, -

1

8
, 0,

1

8
,

9

64
,

5

32
,
11

64
,

3

16
,
13

64
,

7

32
,
15

64
,
1

4
,

9

32
,

5

16
,
11

32
,
3

8
,
13

32
,

7

16
,
15

32
,
1

2
,
17

32
,

9

16
,
19

32
,
5

8
,
21

32
,
11

16
,
23

32
,

3

4
,
25

32
,
13

16
,
27

32
,
7

8
,
29

32
,
15

16
,
31

32
, 1,

17

16
,
9

8
,
19

16
,
5

4
,
21

16
,
11

8
,
23

16
,
3

2
,
25

16
,

13

8
,
27

16
,
7

4
,
29

16
,
15

8
,
31

16
, 2,

17

8
,
9

4
,
19

8
,
5

2
,
21

8
,
11

4
,
23

8
, 3,

25

8
,
13

4
,
27

8
,

7

2
,
29

8
,
15

4
,
31

8
, 4,

9

2
, 5,

11

2
, 6,

13

2
, 7,

15

2
, 8, 9, 10, 11, 12, 13, 14, 15

Eight bits can produce 28 = 256 distinct bit patterns. How many mathematical values are in the
above list?

Posits4.nb 53

Length[morris8s]

161

There should be 256 distinct values… but we only have 161. The Morris system is littered with
redundant ways to express the same value, wasting over one-third of the bit patterns.

With that as the number system, we can plot the decimal accuracy alongside that for posits and
conventional floats:

At their best, Morris floats match posit accuracy, but have a much smaller dynamic range. Let’s at
least show that by allowing two bits in G instead of one, Morris floats can have a larger dynamic
range (at the expense of very low accuracy everywhere):

setmorrisenv[{8, 2}]
{nmbit, gs, minmorris, maxmorris}

8, 2,
1

32768
, 32768

Here is the set that results, after removing all the redundancies:

54 Posits4.nb

morris8s = UnionTablem2x[i], i, 0, 2nmbit - 1

-32768, -16384, -8192, -4096, -2048, -1024, -512, -256, -192, -128, -96,

-64, -48, -32, -24, -16, -14, -12, -10, -8, -7, -6, -5, -4, -
15

4
, -

7

2
,

-
13

4
, -3, -

11

4
, -

5

2
, -

9

4
, -2, -

15

8
, -

7

4
, -

13

8
, -

3

2
, -

11

8
, -

5

4
, -

9

8
, -1, -

15

16
,

-
7

8
, -

13

16
, -

3

4
, -

11

16
, -

5

8
, -

9

16
, -

1

2
, -

7

16
, -

3

8
, -

5

16
, -

1

4
, -

7

32
, -

3

16
, -

5

32
,

-
1

8
, -

3

32
, -

1

16
, -

3

64
, -

1

32
, -

3

128
, -

1

64
, -

3

256
, -

1

128
, -

1

256
, -

1

512
, -

1

1024
,

-
1

2048
, -

1

4096
, -

1

8192
, -

1

16384
, -

1

32768
, 0,

1

32768
,

1

16384
,

1

8192
,

1

4096
,

1

2048
,

1

1024
,

1

512
,

1

256
,

1

128
,

3

256
,

1

64
,

3

128
,

1

32
,

3

64
,

1

16
,

3

32
,
1

8
,

5

32
,

3

16
,

7

32
,
1

4
,

5

16
,
3

8
,

7

16
,
1

2
,

9

16
,
5

8
,
11

16
,
3

4
,
13

16
,
7

8
,
15

16
, 1,

9

8
,
5

4
,
11

8
,
3

2
,

13

8
,
7

4
,
15

8
, 2,

9

4
,
5

2
,
11

4
, 3,

13

4
,
7

2
,
15

4
, 4, 5, 6, 7, 8, 10, 12, 14, 16, 24,

32, 48, 64, 96, 128, 192, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768

Now there is even more waste of bit patterns, since there are only 145 distinct values.

At least the dynamic range now goes from 2-15 to 215. But the accuracy is worse than floats for the
full range where floats are defined, except for a small interval for magnitudes between 1/2 and 4,
where it manages to eke out the same accuracy. Hmm… what would happen if we also gave
posits another bit for dynamic range?

Posits4.nb 55

setpositenv[{8, 2}]
posit8 = Table[p2x[positfix[j]], {j, 0, npat - 1}]

ComplexInfinity, -16777216, -1048576, -262144, -65536, -32768, -16384,

-8192, -4096, -3072, -2048, -1536, -1024, -768, -512, -384, -256, -224,
-192, -160, -128, -112, -96, -80, -64, -56, -48, -40, -32, -28, -24, -20,

-16, -15, -14, -13, -12, -11, -10, -9, -8, -
15

2
, -7, -

13

2
, -6, -

11

2
, -5, -

9

2
,

-4, -
15

4
, -

7

2
, -

13

4
, -3, -

11

4
, -

5

2
, -

9

4
, -2, -

15

8
, -

7

4
, -

13

8
, -

3

2
, -

11

8
, -

5

4
, -

9

8
,

-1, -
15

16
, -

7

8
, -

13

16
, -

3

4
, -

11

16
, -

5

8
, -

9

16
, -

1

2
, -

15

32
, -

7

16
, -

13

32
, -

3

8
, -

11

32
, -

5

16
,

-
9

32
, -

1

4
, -

15

64
, -

7

32
, -

13

64
, -

3

16
, -

11

64
, -

5

32
, -

9

64
, -

1

8
, -

15

128
, -

7

64
, -

13

128
,

-
3

32
, -

11

128
, -

5

64
, -

9

128
, -

1

16
, -

7

128
, -

3

64
, -

5

128
, -

1

32
, -

7

256
, -

3

128
, -

5

256
,

-
1

64
, -

7

512
, -

3

256
, -

5

512
, -

1

128
, -

7

1024
, -

3

512
, -

5

1024
, -

1

256
, -

3

1024
, -

1

512
,

-
3

2048
, -

1

1024
, -

3

4096
, -

1

2048
, -

3

8192
, -

1

4096
, -

1

8192
, -

1

16384
, -

1

32768
,

-
1

65536
, -

1

262144
, -

1

1048576
, -

1

16777216
, 0,

1

16777216
,

1

1048576
,

1

262144
,

1

65536
,

1

32768
,

1

16384
,

1

8192
,

1

4096
,

3

8192
,

1

2048
,

3

4096
,

1

1024
,

3

2048
,

1

512
,

3

1024
,

1

256
,

5

1024
,

3

512
,

7

1024
,

1

128
,

5

512
,

3

256
,

7

512
,

1

64
,

5

256
,

3

128
,

7

256
,

1

32
,

5

128
,

3

64
,

7

128
,

1

16
,

9

128
,

5

64
,

11

128
,

3

32
,

13

128
,

7

64
,

15

128
,
1

8
,

9

64
,

5

32
,

11

64
,

3

16
,
13

64
,

7

32
,
15

64
,
1

4
,

9

32
,

5

16
,
11

32
,
3

8
,
13

32
,

7

16
,
15

32
,
1

2
,

9

16
,
5

8
,
11

16
,
3

4
,

13

16
,
7

8
,
15

16
, 1,

9

8
,
5

4
,
11

8
,
3

2
,
13

8
,
7

4
,
15

8
, 2,

9

4
,
5

2
,
11

4
, 3,

13

4
,
7

2
,
15

4
, 4,

9

2
, 5,

11

2
, 6,

13

2
, 7,

15

2
, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, 28, 32, 40,

48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 384, 512, 768, 1024, 1536,

2048, 3072, 4096, 8192, 16384, 32768, 65536, 262144, 1048576, 16777216

Again, here are all three number systems on the same graph.

56 Posits4.nb

That’s a massive dynamic range from a byte-sized number! Posits match or outperform Morris
floats everywhere. Posits also have the same accuracy as IEEE floats except for the regions
close to where they overflow or underflow.

This shows the value of designing a number system to make the best possible use of every bit
pattern. Trying proposed systems out with low precision is a quick way to expose shortcomings
that may be masked when using 32-bit or 64-bit representation.

That was fun, but for the upcoming sections, we need to go back to an {8, 1} posit environment for
comparison with the 8-bit floats:

setpositenv[{8, 1}]
posit8 = Table[p2x[positfix[j]], {j, 0, npat - 1}];

7.6 Comparing floats with posits performing unary operations

7.6.1 Reciprocation
We can compare the reciprocal closure, that is, the percentage of cases where 1 /x is exactly
representable as a member of the set. Compare the percentage of the entire set of floats or posits
for which a reciprocal is exact, finite but inexact, produces a NaN, overflows, or underflows:

13.3% exact 18.8% exact

80.5% inexact 81.3% inexact

5.47% NaN

0.781% overflow

Floats Posits

Only 34 of the float values have exact reciprocals. In contrast, 48 of the 256 unum values have
exact reciprocals, and never experience catastrophic loss of accuracy through overflow. The IEEE
float definition is a “kludge” in that it has subnormal numbers at the low end (the reciprocals of
which incorrectly overflow to infinity), but replaces the high end numbers with NaN values.

The following graph makes it much easier to visualize the relative performance of floats and
posits. The entire set of decimal losses in computing 1 /x is sorted from smallest to largest, and
plotted.

Posits4.nb 57

Only 34 of the float values have exact reciprocals. In contrast, 48 of the 256 unum values have
exact reciprocals, and never experience catastrophic loss of accuracy through overflow. The IEEE
float definition is a “kludge” in that it has subnormal numbers at the low end (the reciprocals of
which incorrectly overflow to infinity), but replaces the high end numbers with NaN values.

The following graph makes it much easier to visualize the relative performance of floats and
posits. The entire set of decimal losses in computing 1 /x is sorted from smallest to largest, and
plotted.

∞

Floats

Posits

0 50 100 150 200 250

All errors,
sorted

0.02

0.04

0.06

0.08

0.10

Decimal error
per calculation

The graph of posit decimal losses grows more slowly than that for floats, and never goes to infinity.

7.6.2 Square Roots

We can also compare square root closure, that is, the percentage of cases where x is exactly
representable as a member of the set. The sqrtbarchart routine also finds out the fraction of the
time a square root is exact, finite but inexact, or produces a NaN. The square root operation
cannot overflow or underflow. Negative inputs produce NaN results, but since the posit “±∞” really
means unsigned infinity, the square root of ±∞ is ±∞ and thus is closed for that input.

7.03% exact 8.20% exact

40.6% inexact 42.2% inexact

52.3% NaN 49.6% NaN

Floats Posits

Posits do better, but at first glance it looks like the advantage is slight. The bar chart does not
reveal just how much more inexact the floats are. The difference in the sorted losses is more
dramatic than it was for computing 1 /x. Here are the sorted losses for every x value that is not
a NaN:

58 Posits4.nb

Floats

Posits

0 20 40 60 80 100 120

All errors,
sorted

0.005

0.010

0.015

0.020

0.025

Decimal error
per calculation

The posit errors are about half those of the floats (for the results that are not indeterminate).

7.6.3 Square

Another common unary operation is x2. Overflow and underflow are a common disaster when
squaring floats. Posits experience their largest decimal loss for squares that would overflow or
underflow by IEEE rounding rules, but at least the loss is a few decimals and not infinite.

13.3% exact 15.6% exact

43.8% inexact 84.4% inexact

5.47% NaN

25.0% overflow

12.5% underflow

Floats Posits

Posits do much better, mainly by not having any exception cases at all.

Posits4.nb 59

∞

Floats

Posits

3.6

0 50 100 150 200

All errors,
sorted

0.05

0.10

0.15

0.20

0.25

0.30

Decimal error
per calculation

Every posit can be squared. (The square of unsigned infinity is again unsigned infinity.) In con-
trast, almost half the squarings of floats result in complete loss of information about the result.

7.6.4 Logarithm (base 2)
We can also compare the logarithm base 2 closure, that is, the percentage of cases where log2(x)
is exactly representable as a member of the set. As with square roots, about half the values
produce a NaN since the logarithm of a negative value is a complex number. Note: we allow posits
to return ±∞ as the logarithm of zero and the logarithm of ±∞. Remember, posit infinity is
unsigned, like zero.

7.81% exact 9.77% exact

39.8% inexact 40.6% inexact

52.3% NaN 49.6% NaN

Floats Posits

Posits do better, and again at first glance it looks like the advantage is slight. There are more
integer powers of 2 in the posit environment, for which the logarithm base 2 is expressible exactly.
Here are the sorted losses for every value that is not a NaN or infinity:

60 Posits4.nb

Floats

Posits

0 20 40 60 80 100 120

All errors,
sorted

0.005

0.010

0.015

0.020

Decimal error
per calculation

The posit errors are again about half those of the floats.

7.6.5 Exponential (base 2)
Maybe one more: 2x. If you can do log2(x), it just takes a scale factor to get to ln(x) or log10(x) or
any other logarithm base. Similarly, once you can do 2x, it is easy to derive a scale factor that also
gets you ⅇx or 10x and so on.

7.81% exact 8.98% exact
56.3% inexact 90.6% inexact

5.47% NaN 0.391% NaN
15.6% overflow

14.8% underflow

Floats Posits

Posits have one exception case: the result is NaN when the argument is ±∞. We can only use ±∞
as a legitimate answer if the result consists entirely of infinite values, but 2-∞ is zero, so 2±∞ is
indeterminate.

The maximum decimal loss for posits is very large, because 2maxpos will be rounded back to
maxpos. For this example set, just a few errors are as high as log1024096 ≈ 1233 decimals. So,
which is worse: the loss of over a thousand decimals, or the loss of an infinite number of deci-
mals? Well, if you can stay away from those (rare) very largest values, it’s still a win, because the
error for smaller values is much better behaved for posits. Think of it this way: the only time you
get a large decimal loss with the posits is when working with numbers far outside of what floats
can even express as input arguments.

Posits4.nb 61

Posits have one exception case: the result is NaN when the argument is ±∞. We can only use ±∞
as a legitimate answer if the result consists entirely of infinite values, but 2-∞ is zero, so 2±∞ is
indeterminate.

The maximum decimal loss for posits is very large, because 2maxpos will be rounded back to
maxpos. For this example set, just a few errors are as high as log1024096 ≈ 1233 decimals. So,
which is worse: the loss of over a thousand decimals, or the loss of an infinite number of deci-
mals? Well, if you can stay away from those (rare) very largest values, it’s still a win, because the
error for smaller values is much better behaved for posits. Think of it this way: the only time you
get a large decimal loss with the posits is when working with numbers far outside of what floats
can even express as input arguments.

∞
1233

0 50 100 150 200

All errors,
sorted

0.005

0.010

0.015

0.020

0.025

0.030

Decimal error
per calculation

For common unary operations 1 /x, x , x2, log2(x), and 2x, posits are consistently and uniformly
more accurate than floats with the same number of bits, and produce meaningful results over a
larger dynamic range. The advantage of posits becomes greater with larger precision. If we were
to show the graphs for the unary operations comparing 32-bit floats with 32-bit posits, they would
be hard to read because the posit errors would hug the x-axis of the plot when graphed at a scale
large enough to show the float errors!

We now turn our attention to the four elementary arithmetic operations that take two arguments:
Addition, subtraction, multiplication, and division.

7.7 Two-argument operations

Now we start to examine the four conventional arithmetic operations + – × ÷ that take two
operands. To help visualize 65536 results, we can make 256 by 256 “closure plots” that show at a
glance what fraction of the results are exact, inexact, overflow, underflow, or NaN.

7.7.1 Comparing addition (or subtraction)
Because x - y = x + (-y) works perfectly in both floats and posits, there is no need to study subtrac-
tion separately. For the addition operation, we compute z = x + y exactly, and compare it with the
sum that is returned by the rules of each number system. It can happen that the result is exact,
that it must be rounded to a nearby finite nonzero number, that it can overflow or underflow, or can
be an indeterminate form like ∞-∞ that produces a NaN. Each of these is color-coded so we can
look at the entire addition table at a glance. In the case of rounded results, the color-coding is a
gradient from black (exact) to magenta (maximum error of either posits or floats). Here’s what the
closure plots look like for the floats and the unums. First, the floats:

62 Posits4.nb

Addition Closure =Exact, =Inexact, =Overflow, =NaN

–maxreal zero maxreal–m
ax

re
al

ze
ro

m
ax

re
al

Addition Closure
18.533% exact
70.068% inexact
10.641% NaN

0.757% overflow

Because of all the NaN representations in the inputs, the float table will always be framed with the
NaN results, shown in yellow. If you look carefully in the upper left and lower right corner, you see
additional NaN results for adding ∞ to –∞, and –∞ to ∞.

Sums of large positive or large negative values overflow to ∞ or –∞, but underflow does not occur
for the addition operator.The error fades from magenta to black where the inputs are very different
magnitude, because the loss of decimal accuracy is very small in such cases.

Here is the closure plot for posits, and its summary table:

Posits4.nb 63

Because of all the NaN representations in the inputs, the float table will always be framed with the
NaN results, shown in yellow. If you look carefully in the upper left and lower right corner, you see
additional NaN results for adding ∞ to –∞, and –∞ to ∞.

Sums of large positive or large negative values overflow to ∞ or –∞, but underflow does not occur
for the addition operator.The error fades from magenta to black where the inputs are very different
magnitude, because the loss of decimal accuracy is very small in such cases.

Here is the closure plot for posits, and its summary table:

Addition Closure =Exact, =Inexact, =NaN

–maxreal zero maxreal–m
ax

re
al

ze
ro

m
ax

re
al

Addition Closure
25.005% exact
74.994% inexact

0.002% NaN
0.000% overflow

The first thing you notice is that the black regions where sums are exact are much broader than
they were for floats. Those are the regions where posits of similar magnitude but opposite sign are
being added, resulting in cancellation of digits. When the magnitudes are near the center of the
dynamic range, scraping off digits results in a smaller magnitude number that requires fewer
fraction bits to represent exactly. Tapered precision is just what you want for those situations, and
those situations happen more often with posits than floats because posits have more numbers
near the center of the dynamic range.

It may look like there are no NaN cases, but there is exactly one amber square, in the extreme
bottom left, representing what happens when you add ±∞ to ±∞. Overflow cases have been
eliminated.

Here is a summary of addition performance for floats versus posits:

64 Posits4.nb

The first thing you notice is that the black regions where sums are exact are much broader than
they were for floats. Those are the regions where posits of similar magnitude but opposite sign are
being added, resulting in cancellation of digits. When the magnitudes are near the center of the
dynamic range, scraping off digits results in a smaller magnitude number that requires fewer
fraction bits to represent exactly. Tapered precision is just what you want for those situations, and
those situations happen more often with posits than floats because posits have more numbers
near the center of the dynamic range.

It may look like there are no NaN cases, but there is exactly one amber square, in the extreme
bottom left, representing what happens when you add ±∞ to ±∞. Overflow cases have been
eliminated.

Here is a summary of addition performance for floats versus posits:

18.5% exact 25.0% exact

70.1% inexact 75.0% inexact

10.6% NaN 0.00153% NaN

0.757% overflow

Floats Posits

The greater incidence of exact sum operations is immediately evident. As with the single-operand
functions, we can sort the decimal errors and plot to compare accuracy loss for float versus posit
addition:

∞

Floats

Posits

0.3

0 10000 20000 30000 40000 50000 60000

All errors,
sorted

0.01

0.02

0.03

0.04

Decimal error
per calculation

For clarity, that graph only plots the first 64000 of the 65536 errors. Plotting the entire set shows
that the last few posit addition cases have a decimal error as high as 0.3, but that only happens
when expressing numbers well beyond the dynamic range of floats anyway.

Posits4.nb 65

∞

Floats

Posits
0 10000 20000 30000 40000 50000 60000

All errors,
sorted

0.05

0.10

0.15

0.20

0.25

0.30

Decimal error
per calculation

The worst case is if maxpos + maxpos is rounded back to maxpos, a decimal error of
log10(2) ≈ 0.3. IEEE floats instead “round” the result to infinity, thereby creating an infinite decimal
error.

7.6.2 Comparing multiplication closure
We use a similar approach for comparing how well floats and posits multiply. Unlike addition,
multiplication can cause floats to underflow. The “gradual underflow” region provides some protec-
tion, as you can see in the center of the closure graph. Without denormalized floats, the blue
underflow region would be a full diamond shape.

66 Posits4.nb

Multiplication Closure =Exact, =Inexact, =Overflow, =Underflow, =NaN

–maxreal zero maxreal–m
ax

re
al

ze
ro

m
ax

re
al

Multiplication Closure
22.272% exact
49.481% inexact

4.950% underflow
12.646% overflow
10.651% NaN

The plot for posit multiplication is much less colorful, and that’s a good thing. Only two pixels light
up as NaN, right next where the axes have their “zero” label. That is where ±∞ is multiplied by 0.

Posits4.nb 67

Multiplication Closure =Exact, =Inexact, =NaN

–maxreal zero maxreal–m
ax

re
al

ze
ro

m
ax

re
al

Multiplication Closure
18.002% exact
81.995% inexact

0.000% underflow
0.000% overflow
0.003% NaN

The floats have more cases where the product is exact than do posits, but at a terrible cost. As the
diagrams show, almost one-quarter of all float products will overflow or underflow, and that fraction
does not decrease for higher precision floats.

68 Posits4.nb

22.3% exact 18.0% exact

51.1% inexact 82.0% inexact

10.7% NaN 0.00305% NaN

12.6% overflow

3.34% underflow

Floats Posits

The worst-case rounding for posits occurs for maxpos × maxpos, which is rounded back to max-
pos. For this set of posits, that represents a (very rare) loss of about 3.6 decimals. As the following
graph shows, posits are dramatically better at minimizing multiplication error than floats:

∞

Floats

3.6

Posits

0 10000 20000 30000 40000 50000 60000

All errors,
sorted

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Decimal error
per calculation

7.7.3 Comparing division closure

Similarly, we can compare the closure for division operations. It is almost a permutation of the
quadrants of the multiplication plot.

Posits4.nb 69

Division Closure =Exact, =Inexact, =Overflow, =Underflow, =NaN

–maxreal zero maxreal–m
ax

re
al

ze
ro

m
ax

re
al

Division Closure
21.539% exact
51.276% inexact

6.866% underflow
9.668% overflow

10.651% NaN

The situation is similar to that for multiplication; somewhat more cases of exact results than for
posits, but almost a quarter of the cases overflow or underflow catastrophically. Notice that the
posit closure plot comes much closer to looking symmetrical about the diagonal line from top left to
bottom right:

70 Posits4.nb

Division Closure =Exact, =Inexact, =NaN

–maxreal zero maxreal–m
ax

re
al

ze
ro

m
ax

re
al

Division Closure
18.002% exact
81.995% inexact

0.000% underflow
0.000% overflow
0.003% NaN

The two NaN values are visible in the bottom left corner (±∞/±∞) and the center (0 /0). Here is a
summary of the comparison for division:

Posits4.nb 71

21.5% exact 18.0% exact

53.1% inexact 82.0% inexact

10.7% NaN 0.00305% NaN

9.67% overflow

5.03% underflow

Floats Posits

The plot of sorted errors is almost identical to the one for multiplication, so there is no need to
repeat it here.

7.7.4 Comparing power closure

Let’s try to compare the closure for xy operations. This is far more difficult to compute than the
standard two-argument arithmetic operations, and many of the results are complex-valued and
thus turn into NaN. Also, 00 and 1∞ are NaN. The pattern is bizarre and spectacular:

72 Posits4.nb

Power Closure =Exact, =Inexact, =Overflow, =Underflow, =NaN

–maxreal zero maxreal–m
ax

re
al

ze
ro

m
ax

re
al

Power Closure
3.433% exact

25.734% inexact
16.835% underflow
17.194% overflow
36.804% NaN

The posit closure plot is similarly thought-provoking. In general, a negative real to the power of a
negative real has an imaginary component and thus trips the NaN indicator for both floats and
posits, creating a large gold band on the left. But there are exceptions, like when the exponent is a
negative even integer. In the extreme bottom left and top left corner, all the posits are negative
even integers.

Posits4.nb 73

Power Closure =Exact, =Inexact, =NaN

–maxreal zero maxreal–m
ax

re
al

ze
ro

m
ax

re
al

Power Closure
2.579% exact

59.821% inexact
0.000% underflow
0.000% overflow

37.601% NaN

Notice that 00 is a NaN, with amber squares in the center of each plot. The float square is larger
because it has two kinds of zero, hence four ways to land on 00. Here is a summary of the compari-
son for the power function:

74 Posits4.nb

3.43% exact 2.58% exact

49.2% inexact 59.8% inexact

10.7% NaN 37.6% NaN

18.8% overflow

17.9% underflow

Floats Posits

The plot of sorted errors eventually goes wildly high, but for the region of values that are not NaN
and are not very large or very small magnitude, posits do their usual accuracy improvement,
though there is a small region on the left where floats get a “head start” by having slightly more
exact values.

Floats

Posits

0 5000 10000 15000

All errors,
sorted

0.005

0.010

0.015

0.020

Decimal error
per calculation

8 A Quad-Precision Test Example

8.1 The Area of a Very Thin Triangle

Here’s a classic “thin triangle” problem, taken from What Every Computer Scientist Should Know
About Floating-Point Arithmetic, by David Goldberg, published in the March, 1991 issue of Comput-
ing Surveys:

Find the area A of a triangle with sides a, b, c, when two of the sides b and c are together
barely longer than half the longest side, a. Specifically, two of the sides are 3 ULPs larger than
half the longest side.

Posits4.nb 75

a
b = a/2+3 ULPs c = a/2+3 ULPs

Think of it like pavement buckling in the hot sun. The classic formula for the area A uses a tempo-
rary value s:

s =
a + b + c

2
; A = s(s - a) (s - b) (s - c) .

The problem with the formula for a thin triangle is that s is very close to the value of a, and the
calculation of s accumulates a rounding error of two ULPs… so the relative error is magnified
about as badly as one could ever imagine. We want to test the ability of posits to surpass floats at
high precision, so we will make the sides

a = 7
b = c = 7 + 3×2-111

which are values that an IEEE quad precision (128-bit) float can express exactly. Suppose all
values are in light years. Sides b and c are larger than half of a by only about 1/200 the diameter
of a proton, yet that is enough to pop the triangle up to a height of about 85 centimeters, the width
of a standard door opening! Let’s use the area formula with Mathematica extended precision
rational values to see what the correct value for the area is (in square light years), to forty deci-
mals of accuracy:

area = Modulea = 7, b = 7 / 2 + 3 × 2-111, c, s, c = b;
s = (a + b + c) / 2;
N s (s - a) (s - b) (s - c) , 39

3.14784204874900425235885265494550774498 × 10-16

That’s in square light years, a hard quantity to visualize. The area is about 55 times the surface
area of the earth.

8.2 Thin triangle area with IEEE quad precision floats

IEEE quad precision uses 15 bits of exponent, so we can set the float environment and check the
dynamic range as follows:

setfloatenv[{128, 15}]
{N[smallsubnormal], N[maxfloat]}

6.475175119438025 × 10-4966, 1.189731495357232 × 104932

Here is the calculation with floats, using the underbar to mean the float version of whatever is
above it. That is, an underbar rounds whatever it underlines to the nearest float.

76 Posits4.nb

Here is the calculation with floats, using the underbar to mean the float version of whatever is
above it. That is, an underbar rounds whatever it underlines to the nearest float.

a = 7; b = c = 7 / 2 + 3 × 2-111;
s = ((a + b) + c)  2;

t = (s × (s - a)) × (s - b) × (s - c);

N t , 36

3.63481490842332134725920516158057683 × 10-16

That’s incorrect by more than 15 percent, a massive error considering that IEEE quad precision
has about 33 decimals of precision. Coloring incorrect digits in orange, floats give us

3.63481490842332134725920516158057683 × 10-16

In other words, it got one decimal digit correct. Since the measurement unit is square light years,
the error is about as big as the surface area of the planet Neptune.

8.3 Thin triangle area with posits: an unfair fight

Now try it with posits, simply by using the overbar instead of the underbar. Choosing es = 7 gives a
posit environment a very similar dynamic range to that of IEEE 128-bit floats (quad precision):

setpositenv[{128, 7}]
{N[minpos], N[maxpos]}

9.73262367930742 × 10-4856, 1.027472172920962 × 104855

a = 7; b = c = 7 / 2 + 3 × 2-111;

s = ((a + b) + c)  2;

t = ((s × (s - a)) × (s - b)) × (s - c);
N t , 39

3.14784204874900425235885265494550774439 × 10-16

Or with the orange wrong-digit notation, posits give us an area of

 3.14784204874900425235885265494550774439 × 10-16

This ultra-precise answer (correct to 37 decimals) could be converted to a 16-bit posit and it would
still have far more accuracy than the 128-bit float result.

9 The Quadratic Formula
We can trot out the example used in The End of Error: Unum Computing, the use of the quadratic

formula -b± b2-4 a c
2 a

 when b is quite a bit larger than a and c, causing loss of significant digits in

one of the two roots. The coefficients used were a = 3, b = 100, c = 2.

Posits4.nb 77

We can trot out the example used in The End of Error: Unum Computing, the use of the quadratic

formula -b± b2-4 a c
2 a

 when b is quite a bit larger than a and c, causing loss of significant digits in

one of the two roots. The coefficients used were a = 3, b = 100, c = 2.

The roots, correct to nine decimals, are

r1 =
1
6
-100 + 9976  = –0.0200120144⋯

r2 =
1
6
-100 - 9976  = –33.3133213⋯

The problem is that when b2 is much larger than a c and the square root is inexact, one root will
have its relative inaccuracy magnified by the subtraction of similar quantities. Traditional numerical
analysis texts teach that programmers should use a trick that rearranges the algebra.

Ideally, a number system should be robust enough that the unwary can use it without memoriz-
ing a trick for every situation.

First, find the roots using single-precision floats:

78 Posits4.nb

setfloatenv[{32, 8}]

quadf = 

-100 + 1002 - 4 × 2 × 3

6
,

-100 - 1002 - 4 × 2 × 3

6
;

Print["Computed roots for floats: ", N[quadf, 9]]
Print"Absolute errors for floats: ",

NAbsquadf〚1〛 -
1
6

-100 + 9976 , Absquadf〚2〛 -
1
6

-100 - 9976 

Computed roots for floats: {-0.0200119019, -33.3133202}

Absolute errors for floats: 1.12566 × 10-7, 1.159 × 10-6

Here is the same calculation using posits:

setpositenv[{32, 2}]

quadp = 
-100 + 1002 - 4 × 2 × 3

6
,

-100 - 1002 - 4 × 2 × 3
6

;

Print["Computed roots for posits: ", N[quadp, 9]]
Print"Absolute errors for posits: ",

NAbsquadp〚1〛 -
1
6

-100 + 9976 , Absquadp〚2〛 -
1
6

-100 - 9976 

Computed roots for posits: {-0.0200120609, -33.3133216}

Absolute errors for posits: 4.64572 × 10-8, 2.71512 × 10-7

The comparison is easier to see using orange wrong-digit notation:

Floats Posits
r1 -0.02001190⋯ -0.02001206⋯ posits get six digits right instead of four
r2 -33.3133202⋯ -33.3133216⋯ posits get eight digits right instead of seven

Incidentally, if we did use the algebraic rearrangement trick, posits still beat floats. The trick is to

write -b+ b2-4 a c
2 a

 as 2 c

-b- b2-4 a c
 to avoid scraping off significant digits by subtracting similar num-

bers. Like most numerical tricks, it is far from obvious, has to be worked out with tedious algebra,
and is prone to errors in coding it. Here is the smaller magnitude root, computed using the trick
with floats:

Posits4.nb 79

quadf =
2 × 2

-100 - 1002 - 4 × 2 × 3
; N[quadf, 9]

NAbsquadf -
1
6

-100 + 9976 

-0.0200120136

8.07458 × 10-10

When the trick is used with posits, the error is about 8 times smaller:

quadp =
4

-100 - 1002 - 4 × 2 × 3

; N[quadp, 9]

NAbsquadp -
1
6

-100 + 9976 

-0.0200120143

1.08966 × 10-10

That is,

Floats Posits
r1 -0.0200120136⋯ -0.0200120143⋯ posits get eight digits right instead of seven.

10 Fused Operations and the Quire Data Type

10.1 An overview of “deferred rounding”

So far, we have shown how posits could be a drop-in replacement for floats. However, they can be
far more powerful than that. After porting a code from floats to posits, if the improved accuracy is
still not enough (like when trying to replace 64-bit floats with 32-bit posits), the quire is easy to use
and can produce massive increases in answer quality. There is nothing like it in floating-point
environments because the IEEE 754 committee has, for over thirty years, firmly and repeatedly
rejected requests to put something like it into the Standard.

The most recent version (2008) of the IEEE 754 standard includes the fused multiply-add in its
repertoire. “Fusing” means deferring the rounding until the last operation in a computation involv-
ing more than one operation, by performing all operations using exact integer arithmetic in a
scratch area with a set size. It is not the same as extended-precision arithmetic, which can
increase the size of integers until the computer runs out of memory. The posit environment sup-
ports the following fused operations, using a fixed-point scratch value called a quire.

Fused multiply-add (a×b) + c
Fused add-multiply (a + b)×c
Fused multiply-multiply-subtract (a×b) - (c×d)
Fused sum ∑ai
Fused dot product (scalar product) ∑ai bi

(By the way, the dictionary tells that “quire” was a medieval term for a booklet made from a fixed
number of pieces of paper or parchment.) We need to find out how many bits of quire are needed
as a function of nbits and es. Notice that all of the operations in the above list are subsets of the
fused dot product in terms of their processor hardware requirements.

As with all unum environments, fusing of operations must be explicit, never covert. If a program-
mer writes

80 Posits4.nb

So far, we have shown how posits could be a drop-in replacement for floats. However, they can be
far more powerful than that. After porting a code from floats to posits, if the improved accuracy is
still not enough (like when trying to replace 64-bit floats with 32-bit posits), the quire is easy to use
and can produce massive increases in answer quality. There is nothing like it in floating-point
environments because the IEEE 754 committee has, for over thirty years, firmly and repeatedly
rejected requests to put something like it into the Standard.

The most recent version (2008) of the IEEE 754 standard includes the fused multiply-add in its
repertoire. “Fusing” means deferring the rounding until the last operation in a computation involv-
ing more than one operation, by performing all operations using exact integer arithmetic in a
scratch area with a set size. It is not the same as extended-precision arithmetic, which can
increase the size of integers until the computer runs out of memory. The posit environment sup-
ports the following fused operations, using a fixed-point scratch value called a quire.

Fused multiply-add (a×b) + c
Fused add-multiply (a + b)×c
Fused multiply-multiply-subtract (a×b) - (c×d)
Fused sum ∑ai
Fused dot product (scalar product) ∑ai bi

(By the way, the dictionary tells that “quire” was a medieval term for a booklet made from a fixed
number of pieces of paper or parchment.) We need to find out how many bits of quire are needed
as a function of nbits and es. Notice that all of the operations in the above list are subsets of the
fused dot product in terms of their processor hardware requirements.

As with all unum environments, fusing of operations must be explicit, never covert. If a program-
mer writes

x := (a * b) +c;

where all variables are of the same type, a compiler designer might be tempted to “help out” by
using the fused multiply-add. A likely result is that the programmer gets a different answer than
that produced by another compiler that rounds after the multiply and again rounds after the add.
Tracking that down can produce many wasted hours trying to figure out why. In a posit environ-
ment, you could request the fused multiply-add with a routine call:

x := FMA (a, b, c);

But what might be easier to read, and more flexible to use, is to declare a quire variable, like this:

posit a, b, c, x;
quire q;
q = (a * b) + c;
x = q;

Because the multiply-accumulation into the quire has no rounding error, this is as repeatable and
reproducible as an integer multiply-add. It is more flexible, because you could also do things this
way:

posit a, b, c, x;
quire q;
q = a * b;
(* Some other code can go here, like to compute c. *)

q += c;
x = q;

We go far beyond fusing just one multiply-add, however, and permit fusing of a bunch of them. At
first, you might think this would require an extended-precision math library and an unpredictable
amount of storage, but that is not the case. We simply have to put a limit on how many accumu-
lates we can do without risk of overflow. It turns out that it can be quite a high limit, especially for
32-bit and 64-bit posits.

The quire approach was introduced by Ulrich Kulisch in the 1970s, at a time when transistors were
too precious to think about putting a fixed-size register with hundreds of bits into a processor.
Kulisch and his colleagues have developed a vast and rich set of techniques for doing large-scale
calculations where the results are accurate to a single rounding error. He called the storage an
“exact accumulator,” but that’s a mouthful and we prefer the simpler coined term, “quire.” All of the
techniques Kulisch created are once again available in posit environments.

Perhaps the biggest surprise is this: Using a quire can make a code faster, not slower. And not by
just a little bit: the most recent hardware tests by Koenig and Biancolin at the ASPIRE lab at
Berkeley show that quire operations are about 3 to 6 times faster than rounding after every opera-
tion. If an approach makes code that much faster and also makes it much more accurate, why
would anyone not want to adopt it?

Posits4.nb 81

We go far beyond fusing just one multiply-add, however, and permit fusing of a bunch of them. At
first, you might think this would require an extended-precision math library and an unpredictable
amount of storage, but that is not the case. We simply have to put a limit on how many accumu-
lates we can do without risk of overflow. It turns out that it can be quite a high limit, especially for
32-bit and 64-bit posits.

The quire approach was introduced by Ulrich Kulisch in the 1970s, at a time when transistors were
too precious to think about putting a fixed-size register with hundreds of bits into a processor.
Kulisch and his colleagues have developed a vast and rich set of techniques for doing large-scale
calculations where the results are accurate to a single rounding error. He called the storage an
“exact accumulator,” but that’s a mouthful and we prefer the simpler coined term, “quire.” All of the
techniques Kulisch created are once again available in posit environments.

Perhaps the biggest surprise is this: Using a quire can make a code faster, not slower. And not by
just a little bit: the most recent hardware tests by Koenig and Biancolin at the ASPIRE lab at
Berkeley show that quire operations are about 3 to 6 times faster than rounding after every opera-
tion. If an approach makes code that much faster and also makes it much more accurate, why
would anyone not want to adopt it?

10.2 Quire size

The smallest magnitude nonzero value that can arise in doing a dot product is minpos2. Every
other product is an integer multiple of minpos2. If we have to perform the dot product of vectors
{maxpos, minpos} and {maxpos, minpos} as an exact operation in a scratch area, we need an
integer big enough to hold maxpos2 minpos2. Recall that maxpos = useednbits-2 and useed = 22es

.
Also, minpos = 1 /maxpos. So

maxpos2

minpos2 = useed 2×2×(nbits-2) = 2(4 nbits-8) 2es

As a fixed-point unsigned integer, (4 nbits - 8) 2es + 2 bits can hold the sum of minpos2 and
maxpos2. For example, for 8-bit posits with es = 0, minpos is 2-6 = 1 /64 and maxpos is 26 = 64. So
you need 12 bits to the right of the binary point, and 13 bits to the left of the binary point, to hold
maxpos2 + minpos2 = 4096 + 1 /4096 as a fixed-point integer:

4096 +
1

4096
= 1000000000000.000000000001

We need one more bit for the sign. But we also need to allow for some carry bits in the worst case
where the numbers added together were all maxpos2 (or all -maxpos2). If we accommodate at
least a billion terms in the sum, and sometimes far more, there shouldn't be much complaining. So
add 30 bits to the integer size. 230 is a little over a billion: 1073741824.), And for good measure,
round that up to the nearest power of two so the hardware design is clean. Here is our definition
for the size of the quire, quiresize, for posit sizes from 4 to 256. (The reason for including sizes
4 and 8 will become more clear when we define rules for the valid type.)

quiresize[n_, e_] := 2Log2,(4 n-8) 2e+1+30

quireexcess[n_, e_] := quiresize[n, e] - ((4 n - 8) 2e + 2)

With these we can generate the table for the standard posit sizes:

82 Posits4.nb

With these we can generate the table for the standard posit sizes:

Posit size,
nbits

Posit es
value

Quire size
(bits)

Excess bits
for carries

8 0 64 38

16 1 256 142

32 2 512 30

64 3 2048 62

128 4 8192 126

256 5 32768 254

The quire sizes are large if you think of them as registers, but far smaller than what it takes to do
extended-precision arithmetic like Mathematica uses. A modern processor core might have 64
general-purpose 64-bit registers; the quire for 64-bit posits would fit in 32 of those.

Earlier, we mentioned that posits as small as 8 bits suffice for Machine Learning. That is true even
if the multiply-accumulation is stored with only 8 bits. It seems likely that the quire for 8-bit posits,
being only 64 bits in size and capable of doing a quarter-trillion accumulates without the possibility
of overflow, could be quite useful in such applications, perhaps improving the rate of convergence.

10.3 What quires can and cannot do

A programmer might think, “These quire variables are so safe and accurate, I think I’ll make all my
variables of quire type.” Not so fast. The list of things you can reasonably ask hardware to do is a
short one, and it does not include multiplying the quire by anything. It’s for accumulation. Assume
there is only one quire register in a core. The assembler instructions should include

◼ Clear the quire
◼ Load the quire from memory
◼ Store the quire to memory
◼ Add the product of two posits to the quire
◼ Subtract the product of two posits from the quire
◼ Add a quire stored in memory to the quire
◼ Subtract a quire stored in memory from the quire
◼ Convert a quire into a posit

From those, it is easy to build up expressions like a×d - b*c in the quire. Simple summation is a
special case of multiplying by 1, as is done with fused multiply-add hardware. If you want to
multiply the number in the quire by something, you have to convert it back to a posit. I have to
admit to being tempted to add one more assembler instruction to the list because it would be so
incredibly useful:

Posits4.nb 83

From those, it is easy to build up expressions like a×d - b*c in the quire. Simple summation is a
special case of multiplying by 1, as is done with fused multiply-add hardware. If you want to
multiply the number in the quire by something, you have to convert it back to a posit. I have to
admit to being tempted to add one more assembler instruction to the list because it would be so
incredibly useful:

◼ Convert the square root of a quire into a posit

That would let you evaluate things like r = x2 + y2 + z2 with only one rounding error, and the
result r would be about the same magnitude as the largest of x, y, and z instead of having to
temporarily store r2 in a posit, which might land where the magnitude is so large or small that
accuracy is lost. Physics simulations are full of such calculations of distance, and the square root
algorithm is a straightforward one to build into hardware; the concern is that for a large quire, the
operation could take many clock cycles to determine the correct rounding, making context switch-
ing coarse-grained and difficult.

We won’t be seeing the quire explicitly in the sections that follow, because we have the luxury of
operating in Mathematica, for which quire exact operations are small subset of what it can do with
its built-in extended-precision arithmetic. If we don’t put an overbar on a result, it is assumed exact
and not rounded. We simply have to restrict the operations where we defer rounding to the above
list.

11 Fast Fourier Transforms (incomplete section)
Here is a garden-variety complex Fast Fourier Transform, in both float form and posit form. The
float form uses fused multiply-add, and the posit form goes slightly farther in fusing complex
operations of the form a*b - c*d.

84 Posits4.nb

(* Conventional power-of-two Fast Fourier Transform with floats. *)

cfftf[rr_List, n_Integer, iflg_Integer] :=
Module{gg = rr, k = n / 2, th = If[iflg ≥ 0, -π, π], tw, ww, tr, ti, i, j},

Whilek ≥ 1,

ww = -2 (Sin[th / (2 k)])2, Sin[th / k];
tw = {1, 0};
Forj = 0, j < k, j++,

Fori = 1, i ≤ n, i += 2 k,

{tr, ti} = gg〚i+j,1〛 - gg〚i+j+k,1〛, gg〚i+j,2〛 - gg〚i+j+k,2〛;

gg〚i+j,1〛, gg〚i+j,2〛 = gg〚i+j,1〛 + gg〚i+j+k,1〛, gg〚i+j,2〛 + gg〚i+j+k,2〛;

gg〚i+j+k,1〛, gg〚i+j+k,2〛 = tw〚1〛 * tr - tw〚2〛 * ti, tw〚1〛 * ti + tw〚2〛 * tr;

tr = tw〚1〛 * ww〚1〛 - tw〚2〛 * ww〚2〛 + tw〚1〛;

tw〚2〛 = tw〚1〛 * ww〚2〛 + tw〚2〛 * ww〚1〛 + tw〚2〛;

tw〚1〛 = tr;

k = k / 2;
Fori = j = 0, i < n - 1, i++,
Ifi < j,
{tr, ti} = gg〚j+1,1〛, gg〚j+1,2〛;
gg〚j+1,1〛, gg〚j+1,2〛 = gg〚i+1,1〛, gg〚i+1,2〛;
gg〚i+1,1〛, gg〚i+1,2〛 = {tr, ti};

k = n / 2; While[k ≤ j, {j = j - k; k = k / 2}]; j = j + k;

gg  n 

Posits4.nb 85

(* Conventional power-of-two Fast Fourier Transform with posits. *)

cfftp[rr_List, n_Integer, iflg_Integer] :=
Module{flg = 0, gg = rr, k = n / 2, th = If[iflg ≥ 0, -π, π], tw, ww, tr, ti, i, j},

Whilek ≥ 1,

ww = -2 (Sin[th / (2 k)])2, Sin[th / k];
tw = {1, 0};
Forj = 0, j < k, j++,
Fori = 1, i ≤ n, i += 2 k,
{tr, ti} = gg〚i+j,1〛 - gg〚i+j+k,1〛, gg〚i+j,2〛 - gg〚i+j+k,2〛;
gg〚i+j,1〛, gg〚i+j,2〛 = gg〚i+j,1〛 + gg〚i+j+k,1〛, gg〚i+j,2〛 + gg〚i+j+k,2〛;
gg〚i+j+k,1〛, gg〚i+j+k,2〛 = tw〚1〛 * tr - tw〚2〛 * ti, tw〚1〛 * ti + tw〚2〛 * tr;

tr = tw〚1〛 * ww〚1〛 - tw〚2〛 * ww〚2〛 + tw〚1〛 * 1; (* Short fused dot product*)
tw〚2〛 = tw〚1〛 * ww〚2〛 + tw〚2〛 * ww〚1〛 + tw〚2〛 * 1;
tw〚1〛 = tr;

If[flg ⩵ 0, gg /= 2; flg = 1, flg = 0];
k = k / 2;

Fori = j = 0, i < n - 1, i++,
Ifi < j,
{tr, ti} = gg〚j+1,1〛, gg〚j+1,2〛;
gg〚j+1,1〛, gg〚j+1,2〛 = gg〚i+1,1〛, gg〚i+1,2〛;
gg〚i+1,1〛, gg〚i+1,2〛 = {tr, ti};

k = n / 2;
While[k ≤ j, {j = j - k; k = k / 2}]; j = j + k;

gg

First, try using half-precision floats.
setfloatenv[{16, 5}]

For example, just put a 1 in the second entry, and see if we can do a forward FFT and an inverse
FFT and get something similar to what we started with:
n = 16; rr = Table[{0, 0}, n]; rr〚2〛 = {1, 0}; rr
{{0, 0}, {1, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0},
{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}

86 Posits4.nb

rrf = cfftf[cfftf[rr, n, 1], n, -1]

{0, 0}, 1, -
985

8388608
, {0, 0}, -

1333

16777216
,

819

16777216
,

{0, 0}, -
1

32768
, -

1

32768
, {0, 0}, -

437

16777216
,

821

67108864
,

{0, 0}, 0,
473

8388608
, {0, 0}, 

437

16777216
,

821

67108864
,

{0, 0}, 
1

32768
, -

1

32768
, {0, 0}, 

1333

16777216
,

819

16777216


The rounding errors hit the points where the sines and cosines are not special angles. Here is the
total error:
N[Total[Total[Abs[rr - rrf]]]]
0.000628978

Now do the same thing with posits:
setpositenv[{16, 2}];
rrp = cfftp[cfftp[rr, n, 1], n, -1]
N[Total[Total[Abs[rr - rrp]]]]

{0, 0}, 1, -
261

8388608
, {0, 0}, 0,

49

16777216
, {0, 0},


69

2097152
,

61

1048576
, {0, 0}, 0,

49

16777216
, {0, 0}, 0,

53

2097152
, {0, 0},

0,
49

16777216
, {0, 0}, 

187

2097152
, -

67

1048576
, {0, 0}, 0,

49

16777216


0.000312209

The usual benchmark is for 1024 points. Fill all the values with –1, 0, or 1 chosen randomly
(seismic explorers and radio astronomers often use such low-precision inputs) and measure the
total error:
SeedRandom[141213562];
n = 1024;
rr = Table[{Random[], Random[]}, n];
rrf = cfftf[cfftf[rr, n, 1], n, -1];
N[Total[Total[Abs[rr - rrf]]]]
1.74042

Here is the 1024-point case done with posits:
setpositenv[{16, 1}]

Posits4.nb 87

SeedRandom[141213562];
n = 1024;
rr = Table[{Random[], Random[]}, n];
rrp = cfftp[cfftp[rr, n, 1], n, -1];
N[Total[Total[Abs[rr - rrp]]]]
0.617407

12 Linear Algebra with Posits: A New Paradigm

12.1 Gaussian elimination is an iterative method

One thing floats do well is to guess answers x to a system of linear equations, A x = b where A is
an n by n matrix and b is a given vector of n values. (At least, they do well under certain condi-
tions, and people have learned to live with those restrictions.) The LINPACK benchmark fills A with
random numbers between -1 and 1, and assigns the sum of each row to the values of b, so that
the answer should be x = {1, 1, …, 1}. We use both the underbar and overbar operator to make
sure each number in A is in the common vocabulary of the two number systems. That benchmark
specifies 64-bit representation of numbers in a way that looks like some kind of floating-point, not
necessarily IEEE 754 Standard; therefore, 64-bit posits can certainly be used on the LINPACK
benchmark!

There’s a good reason for requiring 64-bit precision, which we will now explore. What would
happen, say, if we tried using 16-bit floats and posits? Also, what happens if we recognize that so-
called “direct solvers” are simply iterative solvers that usually stop after one iteration? (Unless
Gaussian elimination is performed with infinite precision, it will only approximate the underlying
mathematics and in general must be applied iteratively to correct the residual error.)

We also do something new, which is to correct an error in the design of the benchmark rules.
The driver assumes the answer is x = {1, 1, …, 1}, but that incorrectly assumes that there was no
rounding in computing b! The values in A have a range of magnitudes, so the exact sum of a row
will in general contain more significant bits than fit exactly into the fraction part of a float or a posit.
Therefore, we tweak the smallest value in each row of A to make sure that there is no rounding in
the right-hand side b. Here is an example using 16-bit IEEE floats. The powQ helper function
returns True if a number a can be exactly represented in p bits, and False if it cannot.

powQ[a_, p_] := Module{abits = RealDigits[a, 2], len, nd},
nd = abits〚2〛;
len = Length[abits〚1〛];
Which
p > len - nd, False,
abits〚1,p+nd〛 ⩵ 0, False,
True, True

Set up the environments. Create the A matrix one row at a time, tweaking it in the least-significant
bits until it sums to a number that can be represented exactly; if the tweaking fails, which happens
in certain uncommon cases, it simply generates a fresh row and tries again. This may seem
reminiscent of reverse error analysis, where the answer produced by arithmetic that rounds is
considered to be the exact solution to a problem that is close to the one specified; however, that is
not really what this is. This is completing the design goal of LINPACK, which is to create an ideal-
ized problem where both the input values and the correct answer are expressible in the numerical
vocabulary of the computing environment.

88 Posits4.nb

Set up the environments. Create the A matrix one row at a time, tweaking it in the least-significant
bits until it sums to a number that can be represented exactly; if the tweaking fails, which happens
in certain uncommon cases, it simply generates a fresh row and tries again. This may seem
reminiscent of reverse error analysis, where the answer produced by arithmetic that rounds is
considered to be the exact solution to a problem that is close to the one specified; however, that is
not really what this is. This is completing the design goal of LINPACK, which is to create an ideal-
ized problem where both the input values and the correct answer are expressible in the numerical
vocabulary of the computing environment.

setfloatenv[{16, 5}]
setpositenv[{16, 2}]
SeedRandom[141213562]; n = 100;
b = Table[0, n]; a = Table[b, n];
Module{abits, at, bbits, bt, (*den,*)fs, i, j, pow, row, temp},

Fori = 1, i ≤ n, i++,
Label[L1];
at = TableRandomReal[{-1, 1}], {j, 1, n};

bt = 

j=1

n
at〚j〛;

fs = Min[nfbits - esize, 1 + Length[fractionbits[x2p[bt]]]];
bbits = RealDigits[bt, 2];
Forj = Length[bbits〚1〛], j ≥ fs + 1, j--,
pow = j - bbits〚2〛;
Ifbbits〚1,j〛 ⩵ 1,
temp = 1; Whiletemp ≤ n¬ powQat〚temp〛, pow, temp++;
If[temp > n, Goto[L1]]; (* Failed; go get another row. *)

at〚temp〛 -= 2-pow



;
a〚i〛 = at;

b〚i〛 = 

j=1

n
at〚j〛;



Check that the row sums equal the right-hand side, using exact arithmetic (easily done using a
quire):

Table[Sum[a〚i,k〛, {k, 1, n}] - b〚i〛, {i, 1, n}]

{0, 0,

0, 0,
0, 0,

0, 0}

We solve the system LINPACK style. Gaussian elimination with partial pivoting, rounding after
every operation. Here’s the algorithm, about as terse as it is possible to make it without making
calls to BLAS-like routines.

Posits4.nb 89

linsolver[a_, b_] := Module
{aa = Transpose[Join[Transpose[a], {b}]], piv, i, j, k, n = Length[b], temp},
Fork = 1, k ≤ n, k++,
piv = k - 1 + (Position[aa〚k;;n,k〛, Max[aa〚k;;n,k〛]])〚1,1〛;
Forj = 1, j ≤ n + 1, j++, temp = aa〚piv,j〛;
aa〚piv,j〛 = aa〚k,j〛;
aa〚k,j〛 = temp;

temp = 1 / aa〚k,k〛; Forj = k, j ≤ n + 1, j++, aa〚k,j〛 *= temp;
Forj = k + 1, j ≤ n + 1, j++,
temp = aa〚k,j〛;
Fori = k + 1, i ≤ n, i++,
aa〚i,j〛 -= aa〚i,k〛 * temp;

Forj = n, j > 1, j--,
temp = aa〚j,n+1〛;
Fori = j - 1, i ≥ 1, i--,
aa〚i,n+1〛 -= aa〚i,j〛 * temp;

aa〚1;;n,n+1〛

That solver will use exact rational-number arithmetic in Mathematica, so test it on our sample
matrix:

linsolver[a, b]

{1, 1,

1, 1,

1, 1,

1, 1}

Had we not “purified” the input matrix, we would not have gotten that answer but instead seen a
mess of rational numbers close to 1 with huge integers for their numerator and denominator.

For the IEEE float version of the solver, we help its accuracy as much as we can by using the
fused multiply-add that is now part of the IEEE 754 Standard (2008). There are only four places in
the following code where we need to round to the nearest float, as shown by the underscoring.

90 Posits4.nb

linsolverf[a_, b_] := Module{aa = Transpose[Join[Transpose[a], {b}]],
piv, i, j, k, nn = Length[b], temp},

Fork = 1, k ≤ nn, k++,
piv = k - 1 + (Position[Abs[aa〚k;;nn,k〛], Max[Abs[aa〚k;;nn,k〛]]])〚1,1〛;
Forj = 1, j ≤ nn + 1, j++, temp = aa〚piv,j〛;
aa〚piv,j〛 = aa〚k,j〛;
aa〚k,j〛 = temp;

(*Print[aa〚k,k〛];
*)temp = 1 / aa〚k,k〛;

Forj = k, j ≤ nn + 1, j++, aa〚k,j〛 = temp * aa〚k,j〛;

Forj = k + 1, j ≤ nn + 1, j++,
temp = aa〚k,j〛;
Fori = k + 1, i ≤ nn, i++,

aa〚i,j〛 = aa〚i,j〛 - aa〚i,k〛 * temp;
(* Backsolve *)

Forj = nn, j > 1, j--,
temp = aa〚j,nn+1〛;
Fori = j - 1, i ≥ 1, i--,

aa〚i,nn+1〛 = aa〚i,nn+1〛 - aa〚i,j〛 * temp;

aa〚1;;nn,nn+1〛

We should get a list of rational numbers (floats) that are pretty close to 1. We also compute the
average deviation of the answer from all 1s:

Posits4.nb 91

xf = linsolverf[a, b]
Print"Average float error: ", NSumAbs[xf - 1]〚i〛, {i, 1, n}  n


2029

2048
,
1919

2048
,
245

256
,
571

512
,
2041

2048
,
271

256
,
551

512
,
1047

1024
,
1999

2048
,
1829

2048
,
241

256
,
267

256
,
1943

2048
,

1979

2048
,
1969

2048
,
271

256
,
1017

1024
,

847

1024
,
541

512
,
1975

2048
,
573

512
,
2017

2048
,
15

16
,
2035

2048
,
121

128
,
1033

1024
,

65

64
,
143

128
,
515

512
,

957

1024
,
1061

1024
,
1941

2048
,
1061

1024
,

921

1024
,
1961

2048
,
1123

1024
,
539

512
,
1087

1024
,
229

256
,

1013

1024
,
1167

1024
,
1995

2048
,
111

128
,

961

1024
,
259

256
,
2019

2048
,
1845

2048
,
549

512
,
1937

2048
,
491

512
,
1009

1024
,

251

256
,
1859

2048
,
2025

2048
,
239

256
,
1123

1024
,
283

256
,
1635

2048
,
1083

1024
,

983

1024
,
1983

2048
,
129

128
,
1075

1024
,

517

512
,
527

512
,
1051

1024
,
475

512
,
529

512
,

991

1024
,
1837

2048
,
517

512
,
1945

2048
,
1857

2048
,
539

512
,
1045

1024
,

937

1024
,

273

256
,
2021

2048
,
1959

2048
,
1045

1024
,
1089

1024
,
545

512
,
2025

2048
,
1885

2048
,
2015

2048
,
1033

1024
,
1119

1024
,
1005

1024
,

1011

1024
,
535

512
,
35

32
,
1877

2048
,
1055

1024
,

939

1024
,
479

512
,
133

128
,
123

128
,

953

1024
,
1029

1024
,
1973

2048


Average float error: 0.0530811

Half-precision IEEE floats have decimal accuracy that wobbles between about 3 and 3.3 decimals,
but we wound up with only about 1 decimal of accuracy (worst case). The posit version is identical
to the float version, for comparison purposes, and also includes the fused multiply-add. (It is
possible to rearrange the loops so that the innermost loop is a dot product, and thus get another
order n reduction in the number of roundings undergone by each result value.)

92 Posits4.nb

linsolverp[a_, b_] := Module{aa = Transpose[Join[Transpose[a], {b}]],
piv, i, j, k, nn = Length[b], temp},

Fork = 1, k ≤ nn, k++,
piv = k - 1 + (Position[Abs[aa〚k;;nn,k〛], Max[Abs[aa〚k;;nn,k〛]]])〚1,1〛;

Forj = 1, j ≤ nn + 1, j++, temp = aa〚piv,j〛;
aa〚piv,j〛 = aa〚k,j〛;
aa〚k,j〛 = temp;

temp = 1 / aa〚k,k〛;
Forj = k, j ≤ nn + 1, j++, aa〚k,j〛 = temp * aa〚k,j〛;
Forj = k + 1, j ≤ nn + 1, j++,
temp = aa〚k,j〛;
Fori = k + 1, i ≤ nn, i++,
aa〚i,j〛 = aa〚i,j〛 - aa〚i,k〛 * temp;

(* Backsolve *)

Forj = nn, j > 1, j--,
temp = aa〚j,nn+1〛;
Fori = j - 1, i ≥ 1, i--,
aa〚i,nn+1〛 = aa〚i,nn+1〛 - aa〚i,j〛 * temp;

aa〚1;;nn,nn+1〛

Again we can produce the list of 100 output values, rational numbers close to 1, and find their
average deviation from 1. The average float error is about 50 percent greater than the average
posit error.

Posits4.nb 93

xp = linsolverp[a, b]
Print"Average posit error: ", NSumAbs[xp - 1]〚i〛, {i, 1, n}  n
ListPlot[{Sort[Abs[xp - 1]], Sort[Abs[xf - 1]]}, PlotRange → {All, All},
PlotStyle → { , }, AxesLabel → {"", "Sorted errors"}]


2015

2048
,
2137

2048
,
1057

1024
,
1875

2048
,
4027

4096
,
3973

4096
,
2031

2048
,
1029

1024
,
4017

4096
,
273

256
,
1981

2048
,

4057

4096
,
263

256
,
553

512
,
2141

2048
,

989

1024
,
1989

2048
,
1153

1024
,
3835

4096
,
511

512
,
3937

4096
,
1037

1024
,

2147

2048
,
1019

1024
,

985

1024
,
2095

2048
,
1993

2048
,
245

256
,
537

512
,
1067

1024
,
519

512
,
3913

4096
,
1933

2048
,

2089

2048
,
4055

4096
,

969

1024
,
3991

4096
,
3937

4096
,
2109

2048
,
1041

1024
,
3625

4096
,
2139

2048
,
2235

2048
,
1051

1024
,

4095

4096
,
261

256
,
2179

2048
,
499

512
,
3941

4096
,
4071

4096
,
4041

4096
,
263

256
,
2065

2048
,
1931

2048
,
2207

2048
,

3821

4096
,
493

512
,
2319

2048
,
513

512
,
1065

1024
,
261

256
,
3957

4096
,
263

256
,
261

256
,
3983

4096
,
3877

4096
,

2099

2048
,

991

1024
,
2037

2048
,
2171

2048
,
4003

4096
,
1051

1024
,
2175

2048
,
3893

4096
,
2103

2048
,
261

256
,
1937

2048
,

3995

4096
,
2099

2048
,
3879

4096
,
2019

2048
,
4053

4096
,
3967

4096
,
535

512
,
4043

4096
,
537

512
,
1937

2048
,
1963

2048
,

2015

2048
,
511

512
,
251

256
,
67

64
,
2055

2048
,
2233

2048
,
2169

2048
,
257

256
,
2169

2048
,
263

256
,
3949

4096
,
3975

4096


Average posit error: 0.0361914

20 40 60 80 100

0.05

0.10

0.15

0.20

Sorted errors

Using 16-bit numbers for a matrix as large as 100-by-100 is clearly risky, since we only have about
three decimals of accuracy but need to accumulate sums of up to 100 numbers. We can compute
the residual, which is the vector of discrepancies b - Ax. In the case of posits, the residual can be
calculated with the quire, rounding only once. For floats, it needs to be spelled out with a matrix-
vector multiply loop using fused multiply-adds.

94 Posits4.nb

rp = b - a.xp;
rf = Table[1, n];
Fori = 1, i ≤ n, i++, s = 0;

Forj = 1, j ≤ n, j++,

s = s + a〚i,j〛 × xf〚j〛;

rf〚i〛 = b〚i〛 - s;

If we now solve for the residual on the right-hand side, we can use the solutions to correct the
result. This is really a form of Newton-Raphson iteration. Incidentally, we’re being lazy here by
calling the solver again, since the solver factored the matrix into lower-upper form and all we have
to do is use that to backsolve, an order n2 amount of work instead of order n3 to do a linear solve
from scratch.

x1p = linsolverp[a, rp];
x1f = linsolverf[a, rf];

The corrected posit form is now quite close, with several cases of hitting 1 exactly in the answer
vector.

xp = xp + x1p


1025

1024
,
1023

1024
,
2049

2048
,
257

256
,
2049

2048
,
1025

1024
,
2053

2048
,
2051

2048
,
2049

2048
,
4085

4096
,
4093

4096
, 1,

4093

4096
,

4093

4096
,
4089

4096
,
4095

4096
,
2049

2048
,
2041

2048
,
1025

1024
,
4091

4096
,
513

512
,
4095

4096
,
511

512
, 1,

1023

1024
,

2047

2048
,
1025

1024
,
2053

2048
,
4095

4096
,
2047

2048
,
2049

2048
,
2047

2048
,
1025

1024
,
2043

2048
,
1023

1024
,
2053

2048
,
2051

2048
,

1027

1024
,
4091

4096
,
4095

4096
,
2053

2048
,
4089

4096
,
2041

2048
,
2045

2048
,
2047

2048
, 1,

2043

2048
,
1025

1024
,
2047

2048
,

2047

2048
,
2049

2048
,
4093

4096
,
4089

4096
,
4095

4096
,
4087

4096
,
513

512
,
2053

2048
,
2039

2048
,
2049

2048
,
511

512
,
2047

2048
,

1,
1025

1024
, 1,

2049

2048
,
2049

2048
,
4089

4096
,
4095

4096
,
4093

4096
,
1023

1024
,
2049

2048
,
2047

2048
,
4087

4096
,
1025

1024
,

1,
4095

4096
,
513

512
,
4095

4096
,
2047

2048
,
1025

1024
,
2049

2048
,
1025

1024
, 1,

2045

2048
,
4095

4096
,
1023

1024
,
2051

2048
,

1,
2049

2048
, 1,

2053

2048
,
2045

2048
,
4095

4096
,
4085

4096
,
2045

2048
,
1025

1024
,
4093

4096
,
4089

4096
,
2047

2048
,
1025

1024


The float residual correction improves only the result only by about a factor of 2, and still never
lands exactly on the correct answer, 1:

Posits4.nb 95

xf = xf + x1f


1023

1024
,
261

256
,
2037

2048
,
241

256
,
1035

1024
,
1999

2048
,
1989

2048
,

989

1024
,
2031

2048
,
1075

1024
,
1039

1024
,
2039

2048
,
525

512
,

1039

1024
,
263

256
,
1013

1024
,
1011

1024
,
1089

1024
,

993

1024
,
529

512
,
1955

2048
,
1023

1024
,
533

512
,
259

256
,
1049

1024
,

1,
2025

2048
,
1931

2048
,
509

512
,
131

128
,
2033

2048
,
525

512
,
63

64
,
267

256
,
517

512
,
1967

2048
,

995

1024
,
1987

2048
,

1053

1024
,
1027

1024
,
243

256
,
521

512
,
543

512
,
1057

1024
,
509

512
,
1027

1024
,
527

512
,
2001

2048
,
1035

1024
,
65

64
,

511

512
,
1051

1024
,
529

512
,
129

128
,
527

512
,
243

256
,
487

512
,
555

512
,
2019

2048
,
1051

1024
,
261

256
,
507

512
,
251

256
,

1027

1024
,
1015

1024
,
2009

2048
,
531

512
,
1031

1024
,
1039

1024
,
269

256
,
501

512
,
1039

1024
,
1059

1024
,
1001

1024
,
1017

1024
,

1061

1024
,
499

512
,
1029

1024
,
65

64
,
2041

2048
,
125

128
,

999

1024
,
257

256
,
267

256
,
1019

1024
,
129

128
,
493

512
,
1035

1024
,

515

512
,
2009

2048
,

973

1024
,
1055

1024
,
1013

1024
,
537

512
,
1057

1024
,
2007

2048
,
1047

1024
,
131

128
,
2025

2048
,
2021

2048


Here are the average deviations from an all-1s correct answer, and plots of the errors, sorted:

Print"Average float error: ", NSumAbs[xf - 1]〚i〛, {i, 1, n}  n;
Print"Average posit error: ", NSumAbs[xp - 1]〚i〛, {i, 1, n}  n;
ListPlot[{Sort[Abs[xp - 1]], Sort[Abs[xf - 1]]}, PlotRange → {All, All},
PlotStyle → { , }, AxesLabel → {"", "Sorted errors"}]

Average float error: 0.0231592

Average posit error: 0.00112549

20 40 60 80 100

0.02

0.04

0.06

0.08

Sorted errors

Another iteration does not improve the float result. But look what it does to the posit result; it nails
it!

96 Posits4.nb

rp = b - a.xp;
x1p = linsolverp[a, rp];
xp = xp + x1p

{1, 1,

1, 1,

1, 1,

1, 1}

The posit answer is infinitely accurate. The correction technique was of limited value for floats
because you really need a quire to do residual correction properly. Since it only improves the
answer slightly, most people never bother with more than one iteration of Gaussian elimination,
and refer to it as a “direct method.” But it is really nothing of the kind; it is a guessing method that
usually progresses toward the solution.

While we’re at it, we can reproduce the original LINPACK benchmark, using 64-bit IEEE floats and
the same 100-by-100 matrix. Let’s see how well that works, where we display the answer in 6-
point type to get a compact display

setfloatenv[{64, 11}]
xf = linsolverf[a, b]; Style[xf, 6]



9007199254740915

9007199254740992

,

1125899906842643

1125899906842624

, 1,

4503599627370305

4503599627370496

,

9007199254740933

9007199254740992

,

2251799813685211

2251799813685248

,

9007199254740829

9007199254740992

,

9007199254740901

9007199254740992

,

2251799813685219

2251799813685248

,

2251799813685315

2251799813685248

,

4503599627370423

4503599627370496

,

9007199254740973

9007199254740992

,

2251799813685265

2251799813685248

,

4503599627370557

4503599627370496

,

4503599627370609

4503599627370496

,

4503599627370487

4503599627370496

,

2251799813685223

2251799813685248

,

2251799813685361

2251799813685248

,

4503599627370363

4503599627370496

,

2251799813685265

2251799813685248

,

9007199254740805

9007199254740992

,

4503599627370531

4503599627370496

,

4503599627370601

4503599627370496

,

1125899906842629

1125899906842624

,

4503599627370517

4503599627370496

,

4503599627370517

4503599627370496

,

2251799813685221

2251799813685248

,

4503599627370351

4503599627370496

,

4503599627370543

4503599627370496

,

9007199254740991

9007199254740992

,

4503599627370481

4503599627370496

,

1125899906842625

1125899906842624

,

4503599627370471

4503599627370496

,

4503599627370627

4503599627370496

,

2251799813685261

2251799813685248

,

9007199254740715

9007199254740992

,

9007199254740779

9007199254740992

,

9007199254740825

9007199254740992

,

4503599627370549

4503599627370496

,

9007199254740981

9007199254740992

,

2251799813685181

2251799813685248

,

1125899906842641

1125899906842624

,

1125899906842671

1125899906842624

,

281474976710659

281474976710656

,

2251799813685265

2251799813685248

,

562949953421317

562949953421312

,

4503599627370601

4503599627370496

,

9007199254740923

9007199254740992

,

9007199254740951

9007199254740992

,

9007199254740973

9007199254740992

,

9007199254740921

9007199254740992

,

562949953421321

562949953421312

,

2251799813685273

2251799813685248

,

4503599627370441

4503599627370496

,

2251799813685299

2251799813685248

,

4503599627370403

4503599627370496

,

4503599627370401

4503599627370496

,

4503599627370737

4503599627370496

,

1125899906842615

1125899906842624

,

4503599627370601

4503599627370496

,

4503599627370557

4503599627370496

,

9007199254740931

9007199254740992

,

4503599627370519

4503599627370496

,

9007199254740981

9007199254740992

,

2251799813685223

2251799813685248

,

4503599627370411

4503599627370496

,

4503599627370593

4503599627370496

,

9007199254740981

9007199254740992

,

4503599627370535

4503599627370496

,

2251799813685313

2251799813685248

,

9007199254740949

9007199254740992

,

4503599627370531

4503599627370496

,

4503599627370629

4503599627370496

,

9007199254740881

9007199254740992

,

2251799813685255

2251799813685248

,

4503599627370525

4503599627370496

,

4503599627370389

4503599627370496

,

9007199254740935

9007199254740992

,

4503599627370499

4503599627370496

,

9007199254740861

9007199254740992

,

9007199254740901

9007199254740992

,

9007199254740941

9007199254740992

,

1125899906842601

1125899906842624

,

4503599627370625

4503599627370496

,

4503599627370479

4503599627370496

,

2251799813685291

2251799813685248

,

9007199254740753

9007199254740992

,

9007199254740939

9007199254740992

,

1125899906842621

1125899906842624

,

4503599627370491

4503599627370496

,

9007199254740773

9007199254740992

,

2251799813685289

2251799813685248

,

9007199254740983

9007199254740992

,

4503599627370677

4503599627370496

,

2251799813685307

2251799813685248

,

4503599627370485

4503599627370496

,

1125899906842643

1125899906842624

,

4503599627370563

4503599627370496

,

4503599627370497

4503599627370496

,

140737488355325

140737488355328



The answer is close, but misses the correct value, 1, for every single entry. To make it easier to
read, here are the first few entries of the answer vector expressed as decimals, to 54 digits:

Posits4.nb 97

Table[N[xf〚i〛, 54], {i, 1, 10}] // TableForm

0.999999999999991451282710386294638738036155700683593750

1.00000000000001687538997430237941443920135498046875000

1.000

0.999999999999957589480459319020155817270278930664062500

0.99999999999999344968415471157641150057315826416015625

0.999999999999983568699235547683201730251312255859375000

0.999999999999981903364698609948391094803810119628906250

0.999999999999989896970475911075482144951820373535156250

0.999999999999987121412914348184131085872650146484375000

1.00000000000002975397705995419528335332870483398437500

The choice seems pretty clear; use 64-bit floats and get the wrong answer for every single one of
the entries in the answer vector, or use 16-bit posits and get the correct answer for every single
entry. Despite the use of the residual correction, the posits would almost certainly be much faster
time to solution, and would certainly use only 1/4 the storage while getting there.

The limit of using 16-bit posits is that they do run out of dynamic range for larger n, when the
matrices are random elements like this. If the matrix is well-posed, as often is true for the linear
systems needed for actual physics simulations, then 16-bit posits should be quite capable of
producing answers that are reliable to about three decimals of accuracy, and that’s often sufficient
for scientific and engineering purposes.

12.2 Bailey’s Numerical Nightmare, Redux

Recall this example from The End of Error: A 2-by-2 linear system David Bailey came up with
whose condition number is about as bad as it gets. The matrix is only one ULP away from being
singular! He posed the problem as

0.25510582 0.52746197
0.80143857 1.65707065

x
y =

0.79981812
2.51270273

The answer is x = -1, y = 2. Even though the values are only 8- and 9-decimals, you get into
trouble using double precision floats that are capable of about 16 decimals of accuracy. Part of
Bailey’s point was that there is rounding error in converting the decimals to binary representation,
which is magnified by the ill-conditioning of the matrix. Here is a way to express the problem that
removes the rounding error from converting decimals to binary, where we use variables

a b
c d

x
y =

u
v to represent the system:

{{a, b}, {c, d}} = {{25510582, 52746197}, {80143857, 165707065}}  226;
{u, v} = {79981812, 251270273}  226;

All these input values are now exactly expressible with double-precision IEEE floats. Mathematica
can confirm the exact answer:

98 Posits4.nb

LinearSolve[{{a, b}, {c, d}}, {u, v}]

{-1, 2}

However, that is still not enough to save floats from terrible rounding errors. Since the system is
only 2-by-2, we can write the solution in compact form using Cramer’s rule:

setfloatenv[{64, 11}];
det = a d - b c;

{x, y} = (u d - b v)  det, (a v - u c)  det

{0, 2}

Whoops. While the determinate is evaluated correctly at this precision, u d - b v is not, resulting in
an infinite decimal error underflow in the value for x. If we use 64-bit posits (es = 3), we get the
correct value (-1, 2). But posits have accuracy to spare for such a problem; we can turn the nbits
value all the way down to 59 bits and still get the correct result:

setpositenv[{59, 3}];
det = a d - b c;

{x, y} = (u d - b v)  det, (a v - u c)  det

{-1, 2}

Check the condition number of this matrix to see why “Bailey’s Numerical Nightmare” is a good
nickname for the test case:

Eigenvalues[{{a, b}, {c, d}}]
Print["Condition number is ", N[%〚1〛 / %〚2〛]]

191 217647 + 21 82911992118405   134217728,

1  33554432 191217647 + 21 82911992118405 

Condition number is 3.65642 × 1016

Well-posed systems have a condition number of magnitude near 1. Even though the input values
(and the correct answer) all have magnitude near 1, you can still have a terrible condition number
that produces wildly wrong results. That can still happen with posits, but posits do provide a little
more protection than floats do! Here’s what happens if we ask Mathematica to solve the system
expressed using decimal inputs as Bailey intended:

Posits4.nb 99

{{a, b}, {c, d}} = {{0.25510582, 0.52746197}, {0.80143857, 1.65707065}};
{u, v} = {0.79981812, 2.51270273};
LinearSolve[{{a, b}, {c, d}}, {u, v}]

LinearSolve: Result for LinearSolve of badly conditioned matrix {{0.255106, 0.527462}, {0.801439, 1.65707}}
may contain significant numerical errors.

{0.272534, 1.38454}

12.4 The XSC approach

12.4.1 An interval arithmetic stand-in for a valid environment
In the 1980s, a group of mathematicians at University of Karlsruhe, including Kulisch and S. Rump
and others, developed ways to use quire-type refinement of linear solvers to improve a wide range
of operations, not just solutions to Ax = b. For example, they demonstrated evaluation of polynomi-
als, rational functions, and numerical derivatives to within 0.5 ULP. The key idea is to write such
calculations as a sequence of operations depending on + – × ÷ operations on previously-com-
puted values, which can then be rewritten as a sparse system of equations that is lower-triangular.
That in turn can be solved to very high precision using an exact dot product. While languages like
PASCAL-XSC and ACRITH use the approach, the lack of a standard for a quire (and the availabil-
ity of fast hardware supporting it) has inhibited their wide adoption. The posit environment can
make use of the techniques developed by the Karlsruhe group.

Much of their approach depends on interval bounds, which makes us wish for a complete valid
environment. It’s not like a full environment for valids, but for now we can lean on the built-in
interval arithmetic in Mathematica. We’ll need this later for iterative refinement that uses the quire.
This should be regarded as an unfinished part of the prototype environment, for now. The x2pint
function takes a real value or an interval with real endpoints and returns an interval that has posit
endpoints and encloses the input argument.

x2pint[x_] := Module{e, f, hi, i, lo, p,
pinf = BitShiftLeft[1, nbits - 1], xlo = Min[x], xhi = Max[x], y},

{e, y} = 2es-1, Abs[xlo];
lo = Which(* First, take care of the exception values: *)

0 ≤ xlo < minpos, 0,
xlo < -maxpos y ⩵ ∞, pinf, (* ±∞; 1 followed by all 0 bits *)

-minpos < xlo < 0, Mod[-1, npat], (* -minpos; all 1 bits *)

maxpos < xlo, pinf - 1, (* maxpos; 0 followed by all 1 bits *)

True, If[y ≥ 1, (* Northeast quadrant: *)

p = 1;
i = 2; (* Shift in 1s from the right and scale down. *)

While[y ≥ useed i < nbits, {p, y, i} = {2 p + 1, y / useed, i + 1}];
p = 2 p; i++, (* Else, southeast quadrant: *)

p = 0;
i = 1; (* Shift in 0s from the right and scale up. *)

While[y < 1 i ≤ nbits, {y, i} = {y * useed, i + 1}];
If[i ≥ nbits, p = 2; i = nbits + 1,
p = 1; i++]]; (* Extract exponent bits: *)

100 Posits4.nb

p = 1; i++]]; (* Extract exponent bits: *)

While[e > 1 / 2 i ≤ nbits, p = 2 p;
If[y ≥ 2e, y /= 2e;
p++];

e /= 2; i++];
y--; (* Fraction bits; subtract the hidden bit *)

While[y > 0 i ≤ nbits, y = 2 y; p = 2 p + ⌊y⌋; y -= ⌊y⌋; i++];
p *= 2nbits+1-i;
i++;
(* For low bound, round up if x is negative, down if positive *)

i = BitAnd[p, 1]; p = ⌊p / 2⌋;
p = Which[

i ⩵ 0(y ⩵ 1 y ⩵ 0), p, (* If exact, leave it alone *)

xlo > 0, p, (* inexact and x > 0, so truncate. *)

True, p + 1 (* inexact and x < 0, so round up *)];
Mod[If[xlo < 0, npat - p, p], npat (* Simulate 2's complement *)]

 ;

{e, y} = 2es-1, Abs[xhi];
hi = Which(* First, take care of the exception values: *)

-minpos < xhi ≤ 0, 0,
maxpos < xhi y ⩵ ∞, pinf,
0 < xhi ≤ minpos, 1, (* minpos; all 0 bits except last bit = 1 *)

xhi ≤ -maxpos, pinf + 1, (*-maxpos; 1000…0001 *)

True, If[y ≥ 1, (* Northeast quadrant: *)

p = 1;
i = 2; (* Shift in 1s from the right and scale down. *)

While[y ≥ useed i < nbits, {p, y, i} = {2 p + 1, y / useed, i + 1}];
p = 2 p; i++, (* Else, southeast quadrant: *)

p = 0;
i = 1; (* Shift in 0s from the right and scale up. *)

While[y < 1 i ≤ nbits, {y, i} = {y * useed, i + 1}];
If[i ≥ nbits, p = 2;
i = nbits + 1, p = 1;
i++]];

(* Extract exponent bits: *)

While[e > 1 / 2 i ≤ nbits, p = 2 p;
If[y ≥ 2e, y /= 2e;
p++];

e /= 2; i++];
y--; (* Fraction bits; subtract the hidden bit *)

While[y > 0 i ≤ nbits, y = 2 y; p = 2 p + ⌊y⌋; y -= ⌊y⌋; i++];
p *= 2nbits+1-i;
i++;
(* For high bound, round down if x is negative, up if positive *)

i = BitAnd[p, 1]; p = ⌊p / 2⌋;
p = Which[

i ⩵ 0(y ⩵ 1 y ⩵ 0), p, (* If exact, leave it alone *)

xhi < 0, p, (* inexact and x < 0, so truncate. *)

True, p + 1 (* inexact and x > 0, so round up *)];
Mod[If[xhi < 0, npat - p, p], npat (* Simulate 2's complement *)]

 ;
Interval[{p2x[lo], p2x[hi]}]

;
SetAttributes[x2pint, Listable]

Here’s an example of how it finds a bound on the value of π, using a pair of posits as endpoints of
a closed interval (a subset of what valids can represent):

Posits4.nb 101

Here’s an example of how it finds a bound on the value of π, using a pair of posits as endpoints of
a closed interval (a subset of what valids can represent):

setpositenv[{16, 1}]
x2pint[π]
N[%, 15]

Interval
6433

2048
,
3217

1024


Interval[{3.14111328125000, 3.14160156250000}]

12.4.2 The XSC-style solver for a basic block
Kulisch & Miranker showed that a basic block with only plus-minus-times-divide operations can be
converted to a lower triangular system of equations, and then solved to within 0.5 ULP using the
exact dot product. One of their examples:

Find X = (a + b) ·c -
d
e
.

As a linear algebra problem, this expression is equivalent to solving six linear equations in six
unknowns:

x1 = a
x2 = x1 + b
x3 = c x2

x4 = d
e x5 = x4

x6 = x3 - x5

 which becomes the system

1
-1 1

c -1
1
-1 e

-1 0 1 1

x1

x2

x3

x4

x5

x6

=

a
b
0
d
0
0

.

and the X we seek is x6. The matrix is lower triangular and sparse. Now let’s see if we can pick
posit values in {16, 1} that lead to rounding error, and use Mathematica to solve the system
exactly as a basis for comparison:

102 Posits4.nb

setpositenv[{16, 1}];
A = {{1, 0, 0, 0, 0, 0}, {-1, 1, 0, 0, 0, 0}, {0, c, -1, 0, 0, 0},

{0, 0, 0, 1, 0, 0}, {0, 0, 0, -1, e, 0}, {0, 0, -1, 0, 1, 1}};
B = {a, b, 0, d, 0, 0};
{a, b, c, d, e} = {32, 3 / 64, 1023 / 32768, 3329 / 256, 13};
xexact = LinearSolve[A, B]
N[xexact, 9]

{0.255106, 0.782568, 0.62718, 1.65707, 0.127467, 0.499713}

{0.255106, 0.782568, 0.62718, 1.65707, 0.127467, 0.499713}

Here are the nearest posits to each of those values:

goal = xexact
N[goal, 8]


1045

4096
,
6411

8192
,
2569

4096
,
6787

4096
,

261

2048
,

8187

16384


{0.25512695, 0.78259277, 0.62719727, 1.6569824, 0.12744141, 0.49969482}

The input values were selected to cause trouble, starting with 32 +
3

64
 which rounds up to 32 1

16
 in

this low-precision environment. The c value is selected to make the product approximately 1, and
then adding a ratio (which also rounds) close to –1 magnifies the relative error. Now contrast the
exact value with the computed value we get if we round after every operation:

(a + b) * c -
d
e

N[%]

3

4096

0.000732422

That’s a lot of rounding error for so few operations. Good! Let’s see if we can fix it. Use the posit
linear solver, and then compute the residual with quire-level precision (with a final rounding to the
nearest posit):

Posits4.nb 103

x = linsolverp[A, B]
res1 = B - A.x
N[res1]


1045

4096
,
6411

8192
,
2569

4096
,
6787

4096
,

2089

16384
,

8187

16384


-
11

524288
, -

1

262144
, -

3

1048576
,

93

1048576
, -

9

16384
, 0

-0.0000209808, -3.8147 × 10-6, -2.86102 × 10-6, 0.0000886917, -0.000549316, 0.

Now solve using the residual as the right-hand side, add it as a correction to the first solution, and
express that solution as posits:

adjust1 = linsolverp[A, res1];
x1 = x + adjust1


1045

4096
,
6411

8192
,
2569

4096
,
6787

4096
,

261

2048
,

8187

16384


Notice that this agrees with all six xi values in goal:

goal - x1

{0, 0, 0, 0, 0, 0}

This is why quires and linear solvers are about a lot more than just A x = b problems; they are the
key to evaluating basic block sequences of + – × ÷ operations to within half an ULP, as if there
were only one rounding. The setup of the sparse lower-triangular matrix and the iterative solution
can be done automatically, as has been demonstrated since the 1980s with the XSC languages;
S. Rump estimates that it increases the total work by a maximum of a factor of six, usually much
less. Even if the number of operations goes up by a factor of six, they are using variables in
registers and the closest level of cache, not main memory. If the technique allows low-precision
arithmetic to get satisfactory results, the savings of memory bandwidth and storage (and the
corresponding savings of power and energy costs) should be well worth the extra work, especially
if the programmer can specify where to apply the technique and where not to.

12.4.3 Associative Law for Multiplication?

Experiment: See if the quire can get us the associative property of multiplication. Use a really low-
precision posit environment, and a simple case where (u×v)×w ≠ u×(v×w) after rounding.

setpositenv[{8, 0}]
u = 35 / 32; v = 15 / 16; w = 15 / 16;

Here is the correct product, as a fraction and as an exact decimal:

104 Posits4.nb

Here is the correct product, as a fraction and as an exact decimal:

pex = u v w
N[pex, 13]

7875

8192

0.9613037109375

Notice that this is not even expressible with a quire, which stores integer multiples of 1
4096

 for the

{8, 0} posit environment. Here is the nearest posit to the correct product:

pex
N[%]

31

32

0.96875

This trio of numbers breaks the associative law if we round after each multiplication. Here’s what
we get if we group the last two terms:

u (v w)
N[%]

61

64

0.953125

If we instead happen to group the first two terms, we get the best-possible answer (the one within
0.5 ULP of the exact product, pex):

(u v) w

31

32

The incorrect rounding of 61/64 is only very slightly farther away from the true solution, so this is a
sensitive test case. Half an ULP is 0.0078125 for these values. It’s a “squeaker”; the difference
between the distances to the exact answer pex is only 3/4096:

Posits4.nb 105

Abs[31 / 32. - pex]
Abs[61 / 64. - pex]

0.00744629

0.00817871

This shows that floating-point multiplication is not associative in general, when we round after
every multiply. That is true whether we use floats or posits. (If we use valids, the two ways to
compute the product will always produce overlapping valids, and the overlap can be considered a
tighter bound on the correct value.)

Can quire-based linear solvers restore multiplicative associativity? Set up the product u ·v ·w as a
lower triangular system. When there are only multiplies, adds, and subtracts in an expression, it is
always possible to do this with 1s or –1s on the diagonal.

x1 = u
x2 = x1×v
x3 = x2×w

1 0 0
v -1 0
0 w -1

x1

x2

x3

=

u
0
0

Solving the system exactly produces the product in x3. Here is the exact solution, using Kulisch’s
notations for all variables:

A = {{1, 0, 0}, {v, -1, 0}, {0, w, -1}};
b = {u, 0, 0};
n = Length[b];
xU = LinearSolve[A, b]
NxU, 13


35

32
,
525

512
,
7875

8192


{1.093750000000, 1.025390625000, 0.9613037109375}

Construct an approximate inverse matrix R at posit precision:

R = TableInverse[A]〚i,j〛, {i, 1, n}, {j, 1, n}; MatrixForm[R]

1 0 0
15

16
-1 0

7

8
- 15

16
-1

The refinement matrix is I - R A. Compute it at quire precision and bound with valids (using Mathe-
matica intervals for now, as stand-ins for an actual valid library):

106 Posits4.nb

The refinement matrix is I - R A. Compute it at quire precision and bound with valids (using Mathe-
matica intervals for now, as stand-ins for an actual valid library):

ref = IdentityMatrix[n] - A.R; MatrixForm[ref]
ref = x2pint[ref];
MatrixForm[ref]

0 0 0

0 0 0

- 1

256
0 0

Interval[{0, 0}] Interval[{0, 0}] Interval[{0, 0}]
Interval[{0, 0}] Interval[{0, 0}] Interval[{0, 0}]

Interval- 1

64
, 0 Interval[{0, 0}] Interval[{0, 0}]

We compute R ·b in quire precision, then round to posit as the approximate solution, x˜.

x = R.b


35

32
,
33

32
,
61

64


We calculate the residual, or “defect” as the Germans like to call it, using quire precision… and
again find the nearest posit form of that.

dq = b - A.x

d = dq

0,
3

512
, -

7

512


0,
1

64
, -

1

64


Now we need an interval enclosure around x˜ - xG. Let’s be conservative and give it the entire range
of representable real numbers.

e = Table[Interval[{-maxpos, maxpos}], {i, 1, n}]

{Interval[{-64, 64}], Interval[{-64, 64}], Interval[{-64, 64}]}

This at last sets up the iteration scheme specified by Kulisch on page 31 of “Arithmetic of the
Digital Computer”. The provable bound shrinks with each iteration, tightening the noose until the
uncertainty is only one ULP wide. More work needs to be done to show that valids can do even
better than closed intervals. This is an example where interval-type algorithms are different from
conventional iterative methods; they need to be crafted carefully so that they produce a contrac-
tive map. Some conventional iterative methods do not do this, and with interval arithmetic, the
bounds get looser instead of tighter with each iteration!

Notice, however, that we do not require expertise from the user. A compiler can automatically
generate the refinement process and produce an ULP-wide bound, then rounding it to the nearest
posit. A compiler directive should say which code blocks should be insured for high accuracy in
this way, so that the program does not run slower because of the refinement of answers that need
not be highly accurate. The XSC environments do not have this level of programmer control,
another reason they have not caught on.

Posits4.nb 107

This at last sets up the iteration scheme specified by Kulisch on page 31 of “Arithmetic of the
Digital Computer”. The provable bound shrinks with each iteration, tightening the noose until the
uncertainty is only one ULP wide. More work needs to be done to show that valids can do even
better than closed intervals. This is an example where interval-type algorithms are different from
conventional iterative methods; they need to be crafted carefully so that they produce a contrac-
tive map. Some conventional iterative methods do not do this, and with interval arithmetic, the
bounds get looser instead of tighter with each iteration!

Notice, however, that we do not require expertise from the user. A compiler can automatically
generate the refinement process and produce an ULP-wide bound, then rounding it to the nearest
posit. A compiler directive should say which code blocks should be insured for high accuracy in
this way, so that the program does not run slower because of the refinement of answers that need
not be highly accurate. The XSC environments do not have this level of programmer control,
another reason they have not caught on.

e = x2pint[ref.e + R.d]

Interval[{0, 0}], Interval-
1

64
, -

1

64
, Interval-1,

33

32


e = x2pint[ref.e + R.d]

Interval[{0, 0}], Interval-
1

64
, -

1

64
, Interval0,

1

64


That last element is one ULP wide, so we’re done. We could iterate one more time just to show
that the enclosure is now stable:

e = x2pint[ref.e + R.d]

Interval[{0, 0}], Interval-
1

64
, -

1

64
, Interval0,

1

64


It’s stable. The corrected answer:

x + e

Interval
35

32
,
35

32
, Interval

65

64
,
65

64
, Interval

61

64
,
31

32


Well, it worked. It found the best interval enclosure of the true product, one ULP wide. In replacing
the bound with a posit, we would round to the “even” endpoint 31/32. This shows that the quire
can restore the associative property of algebra to a posit computing environment, if needed. If we
had used interval arithmetic (valids) to do the multiplication, the bound would be two ULPs wide
after the two multiplications. The XSC approach brings that down to one ULP wide, which is then
rounded uniquely and consistently.

12.4.4 When even the quire cannot rescue an ill-posed system
From Kulisch & Miranker, an example where having a low residual does not mean you are close to
the answer. Notice that this is not a lower-triangular matrix; lower-triangular matrices are much
better behaved. This is a lot like Bailey’s Numerical Nightmare, a deceptively simple-looking 2-
by-2 system that nonetheless is terribly ill-posed.

108 Posits4.nb

From Kulisch & Miranker, an example where having a low residual does not mean you are close to
the answer. Notice that this is not a lower-triangular matrix; lower-triangular matrices are much
better behaved. This is a lot like Bailey’s Numerical Nightmare, a deceptively simple-looking 2-
by-2 system that nonetheless is terribly ill-posed.

setpositenv[{16, 1}]
A = {{a11, a12}, {a21, a22}} = 0.780, 0.563, 0.913, 0.659;
b = {b1, b2} = {a11 - a12, a21 - a22};
n = Length[b];
Print[MatrixForm[A], MatrixForm[{X, Y}], " = ", MatrixForm[b]]
3195

4096

1153

2048

7479

8192

5399

8192


X

Y
 =

889

4096

65

256

The exact answer should be {1, -1}, and exact arithmetic using rational numbers is capable of a
true direct solution since there is no rounding:

LinearSolve[A, b]

{1, -1}

To set up the XSC tightening-enclosure iteration, we first find the posit approximation to the
inverse matrix.

R = Inverse[A]; MatrixForm[R]


6848 -5824
-9472 8128



Apply that approximate inverse to the right-hand side vector b to get a starting guess (quire preci-
sion):

x = R.b
N[x]


483

64
,
127

16


{7.54688, 7.9375}

Those values didn’t need rounding to the nearest posit, but happened to be already expressible as
posits. Compute the defect using quire precision, and round to the nearest posit:

d = b - A.x; N[d]

{-10.1367, -11.8672}

Notice that that’s a pretty large defect! The problem lies in the refinement matrix operator,
ref = I - A ·R:

Posits4.nb 109

Notice that that’s a pretty large defect! The problem lies in the refinement matrix operator,
ref = I - A ·R:

ref = IdentityMatrix[n] - A.R; MatrixForm[ref]

- 513

64
- 529

16

- 1201

128
- 1239

32

Unless the spectral radius (the ratio of the largest eigenvalue to the smallest eigenvalue) is less
than 1, we have no assurance of convergence.

N[Eigenvalues[ref]]

{-46.7315, -0.00290473}

The spectral radius is not less than 1, so we should not have high hopes for residual refinement.
Applying the “refinement” operator will make things worse, that is, the interval bound will be come
looser, not tighter.
Residual correction isn’t working even with the quire. There exist problems so ill-posed that they
cannot be solved this way. The XSC workaround is to detect these rare cases and report them to
the user.

Furthermore, consider two candidate solutions. One of them is very close to the correct solution,
X = 0.999, Y = -1.001 (expressed using the closest posit)

{X, Y} = {0.999, -1.001}; N[{X, Y}]

{0.999023, -1.00098}

Our human intuition says that the defect should be very small for such a close guess:

r = b - A.{X, Y}; N[r]

{0.00131154, 0.00153518}

For the second candidate solution, instead try a poorer guess, X = 0.341, Y = -0.087, and check
the residual:

{X, Y} = {0.341, -0.087}; N[{X, Y}]

{0.341003, -0.0870056}

110 Posits4.nb

r = b - A.{X, Y}; N[r]

{0.0000315011, -0.0000758357}

The second choice for the solution vector is clearly farther from the correct solution, yet gives a
smaller residual! At least it is possible to detect when the refinement method will fail. Having a
lucky guess might not help you.

12.4.5 Kulisch polynomial challenge example
Kulisch gives the example of a polynomial that is difficult to evaluate accurately for certain input
values. It has an exact root at 1 2 . If we use a value close to that root, any errors will be magni-

fied.

P[t_] := 8118 t4 - 11482 t3 + t2 + 5741 t - 2030

We should probably write out the definition of the polynomial using Horner’s rule, the way a pro-
gram would actually evaluate the polynomial.

P[t_] := (((8118 t - 11482) t + 1) t + 5741) t - 2030

Kulisch’s example uses t = 0.707107, and shows that the polynomial evaluation is correct to only
two decimal places. To be fair, we need to find the exact answer using the closest binary represen-
tation of 707107

1000000
 as the input quantity. With the environment set for 32-bit posits:

setpositenv[{32, 2}]; t = 707107 / 1000000
N[t, 27]

94906295

134217728

0.707107000052928924560546875

We can express the exact polynomial of that fraction using exact rational arithmetic and 97 deci-
mals to express the output, though of course only the first few decimals are significant digits:

pex = P[t]; N[pex, 97]

-1.9157388506341908195757433328672682792140480557305329831555007480403673980;

61789572238922119140625 × 10-11

Now look what happens when we rely on “machine precision,” that is, internal 64-bit IEEE floats:

Posits4.nb 111

P[N[t]]

-1.93268 × 10-11

Despite using more than 15 significant decimals, only the first two decimals are correct:
-1.9326⋯×10-11. Can we get a better answer with 32-bit posits, using XSC-style refinement
techniques?

Write Horner’s rule for P(t) using five temporary quantities, x1 through x5:

x1 = 8118
x2 = x1 t - 11482
x3 = x2 t + 1
x4 = x3 t + 5741
x5 = x4 t - 2030

 which becomes the system

1
-t 1

-t 1
-t 1

-t 1

x1

x2

x3

x4

x5

=

8118
-11482

1
5741
-2030

.

The best 32-bit posit representation of the exact value is the following, shown to 10 decimals:

pexp = pex; N[pexp]
colorcodep[x2p[pexp]]

-1.91574 × 10-11

11111111110111010111011111010110→-0000000001000101000100000101010

The color coding shows that the fraction only has 20 bits for such a small-magnitude value, for
which an ULP is about one part in about 106. That’s appropriate, since the input value only has six
significant digits. Here’s the Ax = b problem setup and the approximate solution xG, expressed as
exact rational numbers and approximate decimals:

A = {{1, 0, 0, 0, 0}, {-t, 1, 0, 0, 0},
{0, -t, 1, 0, 0}, {0, 0, -t, 1, 0}, {0, 0, 0, -t, 1}};

b = {8118, -11482, 1, 5741, -2030};
n = Length[b];
xU = LinearSolve[A, b];
NxU, 12

8118.00000000, -5741.70537357,

-4059.00006189, 2870.85264302, -1.91573885063 × 10-11

Here is what the approximate inverse looks like, at posit precision:

112 Posits4.nb

R = Inverse[A]; MatrixForm[R]

1 0 0 0 0
94906295

134217728
1 0 0 0

134217811

268435456

94906295

134217728
1 0 0

47453177

134217728

134217811

268435456

94906295

134217728
1 0

67108947

268435456

47453177

134217728

134217811

268435456

94906295

134217728
1

The refinement matrix is I - R A, computed at quire precision but then rounded:

R = Inverse[A]; MatrixForm[R]

1 0 0 0 0
94906295

134217728
1 0 0 0

134217811

268435456

94906295

134217728
1 0 0

47453177

134217728

134217811

268435456

94906295

134217728
1 0

67108947

268435456

47453177

134217728

134217811

268435456

94906295

134217728
1

ref = IdentityMatrix[5] - A.R;
ref = x2pint[ref];
Style[MatrixForm[ref], 5]

Interval0, 0 Interval0, 0 Interval0, 0 Interval0, 0 Interval0, 0

Interval0, 0 Interval0, 0 Interval0, 0 Interval0, 0 Interval0, 0

Interval
365645

1125899906842624
,

1462581

4503599627370496
 Interval0, 0 Interval0, 0 Interval0, 0 Interval0, 0

Interval-
650367

562949953421312
, -

1300733

1125899906842624
 Interval

365645

1125899906842624
,

1462581

4503599627370496
 Interval0, 0 Interval0, 0 Interval0, 0

Interval
1102687

1125899906842624
,

34459

35184372088832
 Interval-

650367

562949953421312
, -

1300733

1125899906842624
 Interval

365645

1125899906842624
,

1462581

4503599627370496
 Interval0, 0 Interval0, 0

We compute R ·b in quire precision, then round to posit as the approximate solution, x˜.

x = R.b

8118, -
23518025

4096
, -

66502657

16384
,
23518025

8192
, -

3561

268435456


We always calculate the “defect” exactly, at quire precision, and round to posit precision:

d = b - A.x

0, -
3443

67108864
,

19472337

549755813888
, -

4812023

274877906944
,

28667951

1099511627776


Now we need an interval enclosure around x˜ - xG as a starting guess. As usual, be ultra-conserva-
tive and use the largest possible starting interval.

Posits4.nb 113

Now we need an interval enclosure around x˜ - xG as a starting guess. As usual, be ultra-conserva-
tive and use the largest possible starting interval.

e = Table[Interval[{-maxpos, maxpos}], {i, 1, n}];

This at last sets up the iteration scheme specified by Kulisch on page 31 of “Arithmetic of the
Digital Computer”. We can watch just what happens to the last element of e, since that’s the
answer we seek.

e = x2pintref.e + R.d; N[e〚-1〛]

Interval-3.32696 × 1027, 3.32696 × 1027

It has a long way to come down, but it’s shrinking fast.

e = x2pintref.e + R.d; N[e〚-1〛]

Interval-1.41344 × 1017, 1.41344 × 1017

This is looking good.

e = x2pintref.e + R.d; N[e〚-1〛]

Interval[{0.0000132657, 0.0000132657}]

That looks converged, but do it one more time just to be sure:

e = x2pintref.e + R.d; N[e〚-1〛]

Interval[{0.0000132657, 0.0000132657}]

It has stopped changing. Now apply the correction:

x = x + e; N[x]

Interval[{8118., 8118.}], Interval[{-5741.71, -5741.71}],

Interval[{-4059., -4059.}], Interval[{2870.85, 2870.85}],

Interval-2.00089 × 10-11, -1.90994 × 10-11

That last interval is the bound, and it’s better than you can do with a 32-bit float by far, as we will
see later. But before we stop, let’s try using a point in each interval as a new starting point,
because we lost a lot of precision when correcting the last term. It was so far away from the right
answer, there weren’t many significant digits available to really zoom in on the answer. The beauty
of the method is that it produces a rigorous bound even with a poor starting point and a very
approximate inverse to the matrix A. As long as A R - I has a spectral radius less than 1, the
enclosure interval will converge to an ULP-wide bound. This has to be one of the supreme achieve-
ments of the interval arithmetic community.

114 Posits4.nb

That last interval is the bound, and it’s better than you can do with a 32-bit float by far, as we will
see later. But before we stop, let’s try using a point in each interval as a new starting point,
because we lost a lot of precision when correcting the last term. It was so far away from the right
answer, there weren’t many significant digits available to really zoom in on the answer. The beauty
of the method is that it produces a rigorous bound even with a poor starting point and a very
approximate inverse to the matrix A. As long as A R - I has a spectral radius less than 1, the
enclosure interval will converge to an ULP-wide bound. This has to be one of the supreme achieve-
ments of the interval arithmetic community.

x = TableMin[x〚i〛], {i, 1, n}; N[x]

8118., -5741.71, -4059., 2870.85, -2.00089 × 10-11

Calculate an exact residual with this better starting guess for the answer:

d = b - A.x; N[d, 12]

0, 0, 5.09592368303 × 10-14, 5.45955751074 × 10-13, 4.39966165171 × 10-13

That very small correction shows this is much closer to the true answer. But we aren’t simply using
a typical iterative method; we are proving that the answer lies inside an interval. Use the usual all-
encompassing interval enclosure to start, and round d to the nearest posit. (If we do not round d to
the nearest posit d˜, we cannot use the quire to compute R·d exactly).

e = Table[Interval[{-maxpos, maxpos}], {i, 1, n}];
d = d; N[d]

0., 0., 5.09592 × 10-14, 5.45956 × 10-13, 4.39966 × 10-13

With the same refinement operator as before, but this better starting point iterate until things stop
changing. Display just the last value as a decimal, and when it seems to be stable, check by
displaying it as a rational number.

e = x2pintref.e + R.d; N[e〚-1〛]

Interval-3.32696 × 1027, 3.32696 × 1027

e = x2pintref.e + R.d; N[e〚-1〛]

Interval-1.41344 × 1017, 1.41344 × 1017

e = x2pintref.e + R.d; N[e〚-1〛]

Interval8.51492 × 10-13, 8.51496 × 10-13

Posits4.nb 115

e = x2pintref.e + R.d; e〚-1〛

Interval
122713

144115188075855872
,

245427

288230376151711744


e = x2pintref.e + R.d; e〚-1〛

Interval
122713

144115188075855872
,

245427

288230376151711744


That’s stable. Add the correction, and look at just the last value, which is the bound on the answer:

x = x + e; bound = x2pint[x〚-1〛]; N[bound, 12]

Interval-1.91573978903 × 10-11, -1.91573701347 × 10-11

We can use color-coded output to show that these posit bounds are one ULP apart, so this is a
maximum-accuracy result, with six decimals of accuracy.

colorcodep[x2p[bound〚1,1〛]]

colorcodep[x2p[bound〚1,2〛]]

11111111110111010111011111010110→-0000000001000101000100000101010

11111111110111010111011111010111→-0000000001000101000100000101001

That’s pretty spectacular, because 32-bit posits produced an answer correct to six decimals with a
provable enclosure, whereas 64-bit floats produced an answer correct to two decimals with no
guarantee of correctness whatsoever. Score 1 for Dr. Kulisch.

Just for fun, let’s see how awful the result would be if we had used 32-bit floats. We convert the
value of t to the nearest float.

setfloatenv[{32, 8}]; t = 0.707107; N[t, 20]

0.70710700750350952148

The exact value of the polynomial using that value of t should be as follows:

fex = N[P[t], 49]
-1.981290238746664096415517533113013804273714636717 × 10-11

Here is the polynomial evaluated with Horner’s rule and IEEE standard rounding after every
operation. It’s kind of fun to see the stack of underlines, which tell you exactly where the roundings
happen.

116 Posits4.nb

Here is the polynomial evaluated with Horner’s rule and IEEE standard rounding after every
operation. It’s kind of fun to see the stack of underlines, which tell you exactly where the roundings
happen.

(((8118 t - 11482) t + 1) t + 5741) t - 2030

0

Whoops. Infinite decimal error. Float arithmetic thinks the value is a root of the polynomial! But
wait, we can at least use fused multiply-adds, which cuts the number of roundings from eight down
to four:

(((8118 t - 11482) t + 1) t + 5741) t - 2030

-
895409

17179869184

That looks a lot bigger than the correct value we calculated, fex. Let’s see just how much bigger it
is:

N[% / fex]

2.63059 × 106

The answer is now off by a factor of 2.6 million. Well, at least it got the sign right!

The combination of posit arithmetic, quire accumulation, and the shrinking interval enclosure
technique allow 32-bit posits to dramatically outperform 64-bit floats. The 32-bit posits produced a
tight, provable bound with six-decimal accuracy, whereas the 64-bit floats produced a guess with
no indication of how many decimal in the guess are correct. And only the first two decimals were
correct.

12.5 Solving a real PDE problem (Sandia’s data set)

12.5.1 Insights regarding Ax = b and the quire data type
If A and b are expressed in posits (or floats) and A is nonsingular, there is exactly one answer for
x: a vector of rational numbers.

There is exactly one x˜ expressible with posits that is closer to x than any other. (Rounding is
unique).

Matrix A times x is a vector of quires, with no rounding error! (512 bits per quire, if we use 32-bit
posits.)

Gaussian elimination with exact dot products as the innermost loop means On2 roundings per

element instead of On3. On a petascale problem for which n ≈ 106, that means about three more
decimals of accuracy in the answer.

Posits4.nb 117

If A and b are expressed in posits (or floats) and A is nonsingular, there is exactly one answer for
x: a vector of rational numbers.

There is exactly one x˜ expressible with posits that is closer to x than any other. (Rounding is
unique).

Matrix A times x is a vector of quires, with no rounding error! (512 bits per quire, if we use 32-bit
posits.)

Gaussian elimination with exact dot products as the innermost loop means On2 roundings per

element instead of On3. On a petascale problem for which n ≈ 106, that means about three more
decimals of accuracy in the answer.

Let's see if we can import a small test file from Sandia based on a real PDE. Start with their 81-
variable system, apparently generated by a 9-by-9 Poisson problem using a 5-point stencil. The
first two numbers are the row-column coordinates within the matrix, and the long decimal is a
double-precision component value. Apologies for this long table of numbers in the middle of this
document…ugh!

sandia81A = {

1, 1, 0.400000000000000133226762955018784851,
2, 1, -0.099999999999999977795539507496869192,
10, 1, -0.100000000000000061062266354383609723,
1, 2, -0.099999999999999977795539507496869192,
2, 2, 0.400000000000000133226762955018784851,
3, 2, -0.099999999999999977795539507496869192,
11, 2, -0.100000000000000088817841970012523234,
2, 3, -0.099999999999999977795539507496869192,
3, 3, 0.416666666666666796192686206268263049,
4, 3, -0.108333333333333364789652364379435312,
12, 3, -0.108333333333333392545227980008348823,
3, 4, -0.108333333333333364789652364379435312,
4, 4, 0.425000000000000155431223447521915659,
5, 4, -0.100000000000000033306690738754696213,
13, 4, -0.116666666666666710150401797818631167,
4, 5, -0.100000000000000033306690738754696213,
5, 5, 0.400000000000000188737914186276611872,
6, 5, -0.100000000000000033306690738754696213,
14, 5, -0.100000000000000033306690738754696213,
5, 6, -0.100000000000000033306690738754696213,
6, 6, 0.400000000000000133226762955018784851,
7, 6, -0.100000000000000033306690738754696213,
15, 6, -0.100000000000000033306690738754696213,
6, 7, -0.100000000000000033306690738754696213,
7, 7, 0.400000000000000133226762955018784851,
8, 7, -0.099999999999999977795539507496869192,
16, 7, -0.100000000000000061062266354383609723,
7, 8, -0.099999999999999977795539507496869192,
8, 8, 0.400000000000000133226762955018784851,
9, 8, -0.099999999999999977795539507496869192,
17, 8, -0.100000000000000088817841970012523234,
8, 9, -0.099999999999999977795539507496869192,
9, 9, 0.400000000000000133226762955018784851,
18, 9, -0.100000000000000061062266354383609723,
1, 10, -0.100000000000000061062266354383609723,
10, 10, 0.400000000000000133226762955018784851,
11, 10, -0.099999999999999977795539507496869192,
19, 10, -0.100000000000000033306690738754696213,
2, 11, -0.100000000000000088817841970012523234,
10, 11, -0.099999999999999977795539507496869192,
11, 11, 0.416666666666666796192686206268263049,

118 Posits4.nb

11, 11, 0.416666666666666796192686206268263049,
12, 11, -0.108333333333333309278501133121608291,
20, 11, -0.108333333333333392545227980008348823,
3, 12, -0.108333333333333392545227980008348823,
11, 12, -0.108333333333333309278501133121608291,
12, 12, 0.516666666666666829499376945022959262,
13, 12, -0.150000000000000077715611723760957830,
21, 12, -0.150000000000000022204460492503130808,
4, 13, -0.116666666666666710150401797818631167,
12, 13, -0.150000000000000077715611723760957830,
13, 13, 0.583333333333333592385372412536526099,
14, 13, -0.125000000000000055511151231257827021,
22, 13, -0.191666666666666679619268620626826305,
5, 14, -0.100000000000000033306690738754696213,
13, 14, -0.125000000000000055511151231257827021,
14, 14, 0.450000000000000177635683940025046468,
15, 14, -0.100000000000000047184478546569152968,
23, 14, -0.125000000000000000000000000000000000,
6, 15, -0.100000000000000033306690738754696213,
14, 15, -0.100000000000000047184478546569152968,
15, 15, 0.400000000000000133226762955018784851,
16, 15, -0.100000000000000047184478546569152968,
24, 15, -0.100000000000000005551115123125782702,
7, 16, -0.100000000000000061062266354383609723,
15, 16, -0.100000000000000047184478546569152968,
16, 16, 0.400000000000000133226762955018784851,
17, 16, -0.099999999999999977795539507496869192,
25, 16, -0.100000000000000033306690738754696213,
8, 17, -0.100000000000000088817841970012523234,
16, 17, -0.099999999999999977795539507496869192,
17, 17, 0.400000000000000077715611723760957830,
18, 17, -0.099999999999999977795539507496869192,
26, 17, -0.100000000000000061062266354383609723,
9, 18, -0.100000000000000061062266354383609723,
17, 18, -0.099999999999999977795539507496869192,
18, 18, 0.400000000000000133226762955018784851,
27, 18, -0.100000000000000033306690738754696213,
10, 19, -0.100000000000000033306690738754696213,
19, 19, 0.416666666666666796192686206268263049,
20, 19, -0.108333333333333309278501133121608291,
28, 19, -0.108333333333333364789652364379435312,
11, 20, -0.108333333333333392545227980008348823,
19, 20, -0.108333333333333309278501133121608291,
20, 20, 0.516666666666666718477074482507305220,
21, 20, -0.149999999999999966693309261245303787,
29, 20, -0.150000000000000077715611723760957830,
12, 21, -0.150000000000000022204460492503130808,
20, 21, -0.149999999999999966693309261245303787,
21, 21, 0.733333333333333392545227980008348823,
22, 21, -0.216666666666666757334880344387784135,
30, 21, -0.216666666666666729579304728758870624,
13, 22, -0.191666666666666679619268620626826305,
21, 22, -0.216666666666666757334880344387784135,
22, 22, 0.908333333333333658998753890045918524,
23, 22, -0.225000000000000088817841970012523234,
31, 22, ,

Posits4.nb 119

31, 22, -0.275000000000000022204460492503130808,
14, 23, -0.125000000000000000000000000000000000,
22, 23, -0.225000000000000088817841970012523234,
23, 23, 0.700000000000000288657986402540700510,
24, 23, -0.125000000000000055511151231257827021,
32, 23, -0.225000000000000005551115123125782702,
15, 24, -0.100000000000000005551115123125782702,
23, 24, -0.125000000000000055511151231257827021,
24, 24, 0.450000000000000122124532708767219447,
25, 24, -0.100000000000000061062266354383609723,
33, 24, -0.125000000000000000000000000000000000,
16, 25, -0.100000000000000033306690738754696213,
24, 25, -0.100000000000000061062266354383609723,
25, 25, 0.400000000000000133226762955018784851,
26, 25, -0.099999999999999977795539507496869192,
34, 25, -0.100000000000000033306690738754696213,
17, 26, -0.100000000000000061062266354383609723,
25, 26, -0.099999999999999977795539507496869192,
26, 26, 0.400000000000000077715611723760957830,
27, 26, -0.099999999999999977795539507496869192,
35, 26, -0.100000000000000061062266354383609723,
18, 27, -0.100000000000000033306690738754696213,
26, 27, -0.099999999999999977795539507496869192,
27, 27, 0.400000000000000133226762955018784851,
36, 27, -0.100000000000000033306690738754696213,
19, 28, -0.108333333333333364789652364379435312,
28, 28, 0.425000000000000099920072216264088638,
29, 28, -0.116666666666666640761462758746347390,
37, 28, -0.100000000000000033306690738754696213,
20, 29, -0.150000000000000077715611723760957830,
28, 29, -0.116666666666666640761462758746347390,
29, 29, 0.583333333333333370340767487505218014,
30, 29, -0.191666666666666596352541773740085773,
38, 29, -0.125000000000000083266726846886740532,
21, 30, -0.216666666666666729579304728758870624,
29, 30, -0.191666666666666596352541773740085773,
30, 30, 0.908333333333333436954148965014610440,
31, 30, -0.275000000000000133226762955018784851,
39, 30, -0.225000000000000033306690738754696213,
22, 31, -0.275000000000000022204460492503130808,
30, 31, -0.275000000000000133226762955018784851,
31, 31, 1.100000000000000310862446895043831319,
32, 31, -0.275000000000000133226762955018784851,
40, 31, -0.275000000000000022204460492503130808,
23, 32, -0.225000000000000005551115123125782702,
31, 32, -0.275000000000000133226762955018784851,
32, 32, 0.908333333333333547976451427530264482,
33, 32, -0.191666666666666762885995467513566837,
41, 32, -0.216666666666666674068153497501043603,
24, 33, -0.125000000000000000000000000000000000,
32, 33, -0.191666666666666762885995467513566837,
33, 33, 0.583333333333333481363069950020872056,
34, 33, -0.116666666666666724028189605633087922,
42, 33, -0.150000000000000022204460492503130808,
25, 34, -0.100000000000000033306690738754696213,
33, 34, ,

120 Posits4.nb

33, 34, -0.116666666666666724028189605633087922,
34, 34, 0.425000000000000099920072216264088638,
35, 34, -0.099999999999999977795539507496869192,
43, 34, -0.108333333333333364789652364379435312,
26, 35, -0.100000000000000061062266354383609723,
34, 35, -0.099999999999999977795539507496869192,
35, 35, 0.400000000000000077715611723760957830,
36, 35, -0.099999999999999977795539507496869192,
44, 35, -0.100000000000000061062266354383609723,
27, 36, -0.100000000000000033306690738754696213,
35, 36, -0.099999999999999977795539507496869192,
36, 36, 0.400000000000000133226762955018784851,
45, 36, -0.100000000000000033306690738754696213,
28, 37, -0.100000000000000033306690738754696213,
37, 37, 0.400000000000000133226762955018784851,
38, 37, -0.099999999999999977795539507496869192,
46, 37, -0.100000000000000033306690738754696213,
29, 38, -0.125000000000000083266726846886740532,
37, 38, -0.099999999999999977795539507496869192,
38, 38, 0.450000000000000122124532708767219447,
39, 38, -0.124999999999999986122212192185543245,
47, 38, -0.100000000000000061062266354383609723,
30, 39, -0.225000000000000033306690738754696213,
38, 39, -0.124999999999999986122212192185543245,
39, 39, 0.700000000000000177635683940025046468,
40, 39, -0.225000000000000088817841970012523234,
48, 39, -0.125000000000000055511151231257827021,
31, 40, -0.275000000000000022204460492503130808,
39, 40, -0.225000000000000088817841970012523234,
40, 40, 0.908333333333333658998753890045918524,
41, 40, -0.216666666666666785090455960016697645,
49, 40, -0.191666666666666651863693004997912794,
32, 41, -0.216666666666666674068153497501043603,
40, 41, -0.216666666666666785090455960016697645,
41, 41, 0.733333333333333503567530442524002865,
42, 41, -0.150000000000000077715611723760957830,
50, 41, -0.150000000000000022204460492503130808,
33, 42, -0.150000000000000022204460492503130808,
41, 42, -0.150000000000000077715611723760957830,
42, 42, 0.516666666666666829499376945022959262,
43, 42, -0.108333333333333392545227980008348823,
51, 42, -0.108333333333333337034076748750521801,
34, 43, -0.108333333333333364789652364379435312,
42, 43, -0.108333333333333392545227980008348823,
43, 43, 0.416666666666666796192686206268263049,
44, 43, -0.099999999999999977795539507496869192,
52, 43, -0.100000000000000033306690738754696213,
35, 44, -0.100000000000000061062266354383609723,
43, 44, -0.099999999999999977795539507496869192,
44, 44, 0.400000000000000077715611723760957830,
45, 44, -0.099999999999999977795539507496869192,
53, 44, -0.100000000000000061062266354383609723,
36, 45, -0.100000000000000033306690738754696213,
44, 45, -0.099999999999999977795539507496869192,
45, 45, 0.400000000000000133226762955018784851,
54, 45, ,

Posits4.nb 121

54, 45, -0.100000000000000033306690738754696213,
37, 46, -0.100000000000000033306690738754696213,
46, 46, 0.400000000000000133226762955018784851,
47, 46, -0.099999999999999977795539507496869192,
55, 46, -0.100000000000000033306690738754696213,
38, 47, -0.100000000000000061062266354383609723,
46, 47, -0.099999999999999977795539507496869192,
47, 47, 0.400000000000000133226762955018784851,
48, 47, -0.099999999999999977795539507496869192,
56, 47, -0.100000000000000061062266354383609723,
39, 48, -0.125000000000000055511151231257827021,
47, 48, -0.099999999999999977795539507496869192,
48, 48, 0.450000000000000122124532708767219447,
49, 48, -0.125000000000000055511151231257827021,
57, 48, -0.100000000000000033306690738754696213,
40, 49, -0.191666666666666651863693004997912794,
48, 49, -0.125000000000000055511151231257827021,
49, 49, 0.583333333333333370340767487505218014,
50, 49, -0.150000000000000077715611723760957830,
58, 49, -0.116666666666666668517038374375260901,
41, 50, -0.150000000000000022204460492503130808,
49, 50, -0.150000000000000077715611723760957830,
50, 50, 0.516666666666666829499376945022959262,
51, 50, -0.108333333333333392545227980008348823,
59, 50, -0.108333333333333337034076748750521801,
42, 51, -0.108333333333333337034076748750521801,
50, 51, -0.108333333333333392545227980008348823,
51, 51, 0.416666666666666796192686206268263049,
52, 51, -0.100000000000000061062266354383609723,
60, 51, -0.100000000000000005551115123125782702,
43, 52, -0.100000000000000033306690738754696213,
51, 52, -0.100000000000000061062266354383609723,
52, 52, 0.400000000000000133226762955018784851,
53, 52, -0.099999999999999977795539507496869192,
61, 52, -0.100000000000000033306690738754696213,
44, 53, -0.100000000000000061062266354383609723,
52, 53, -0.099999999999999977795539507496869192,
53, 53, 0.400000000000000077715611723760957830,
54, 53, -0.099999999999999977795539507496869192,
62, 53, -0.100000000000000061062266354383609723,
45, 54, -0.100000000000000033306690738754696213,
53, 54, -0.099999999999999977795539507496869192,
54, 54, 0.400000000000000133226762955018784851,
63, 54, -0.100000000000000033306690738754696213,
46, 55, -0.100000000000000033306690738754696213,
55, 55, 0.400000000000000133226762955018784851,
56, 55, -0.099999999999999977795539507496869192,
64, 55, -0.100000000000000033306690738754696213,
47, 56, -0.100000000000000061062266354383609723,
55, 56, -0.099999999999999977795539507496869192,
56, 56, 0.400000000000000077715611723760957830,
57, 56, -0.099999999999999977795539507496869192,
65, 56, -0.100000000000000061062266354383609723,
48, 57, -0.100000000000000033306690738754696213,
56, 57, -0.099999999999999977795539507496869192,
57, 57, 0.400000000000000133226762955018784851,

122 Posits4.nb

57, 57, 0.400000000000000133226762955018784851,
58, 57, -0.100000000000000061062266354383609723,
66, 57, -0.100000000000000033306690738754696213,
49, 58, -0.116666666666666668517038374375260901,
57, 58, -0.100000000000000061062266354383609723,
58, 58, 0.425000000000000155431223447521915659,
59, 58, -0.108333333333333392545227980008348823,
67, 58, -0.100000000000000005551115123125782702,
50, 59, -0.108333333333333337034076748750521801,
58, 59, -0.108333333333333392545227980008348823,
59, 59, 0.416666666666666796192686206268263049,
60, 59, -0.100000000000000061062266354383609723,
68, 59, -0.100000000000000005551115123125782702,
51, 60, -0.100000000000000005551115123125782702,
59, 60, -0.100000000000000061062266354383609723,
60, 60, 0.400000000000000133226762955018784851,
61, 60, -0.100000000000000061062266354383609723,
69, 60, -0.100000000000000005551115123125782702,
52, 61, -0.100000000000000033306690738754696213,
60, 61, -0.100000000000000061062266354383609723,
61, 61, 0.400000000000000133226762955018784851,
62, 61, -0.099999999999999977795539507496869192,
70, 61, -0.100000000000000033306690738754696213,
53, 62, -0.100000000000000061062266354383609723,
61, 62, -0.099999999999999977795539507496869192,
62, 62, 0.400000000000000077715611723760957830,
63, 62, -0.099999999999999977795539507496869192,
71, 62, -0.100000000000000061062266354383609723,
54, 63, -0.100000000000000033306690738754696213,
62, 63, -0.099999999999999977795539507496869192,
63, 63, 0.400000000000000133226762955018784851,
72, 63, -0.100000000000000033306690738754696213,
55, 64, -0.100000000000000033306690738754696213,
64, 64, 0.400000000000000077715611723760957830,
65, 64, -0.100000000000000005551115123125782702,
73, 64, -0.100000000000000005551115123125782702,
56, 65, -0.100000000000000061062266354383609723,
64, 65, -0.100000000000000005551115123125782702,
65, 65, 0.400000000000000077715611723760957830,
66, 65, -0.100000000000000005551115123125782702,
74, 65, -0.100000000000000019428902930940239457,
57, 66, -0.100000000000000033306690738754696213,
65, 66, -0.100000000000000005551115123125782702,
66, 66, 0.400000000000000133226762955018784851,
67, 66, -0.100000000000000074940054162198066479,
75, 66, -0.100000000000000005551115123125782702,
58, 67, -0.100000000000000005551115123125782702,
66, 67, -0.100000000000000074940054162198066479,
67, 67, 0.400000000000000133226762955018784851,
68, 67, -0.100000000000000074940054162198066479,
76, 67, -0.099999999999999977795539507496869192,
59, 68, -0.100000000000000005551115123125782702,
67, 68, -0.100000000000000074940054162198066479,
68, 68, 0.400000000000000133226762955018784851,
69, 68, -0.100000000000000074940054162198066479,
77, 68, ,

Posits4.nb 123

77, 68, -0.099999999999999977795539507496869192,
60, 69, -0.100000000000000005551115123125782702,
68, 69, -0.100000000000000074940054162198066479,
69, 69, 0.400000000000000133226762955018784851,
70, 69, -0.100000000000000074940054162198066479,
78, 69, -0.099999999999999977795539507496869192,
61, 70, -0.100000000000000033306690738754696213,
69, 70, -0.100000000000000074940054162198066479,
70, 70, 0.400000000000000077715611723760957830,
71, 70, -0.100000000000000005551115123125782702,
79, 70, -0.100000000000000005551115123125782702,
62, 71, -0.100000000000000061062266354383609723,
70, 71, -0.100000000000000005551115123125782702,
71, 71, 0.400000000000000077715611723760957830,
72, 71, -0.100000000000000005551115123125782702,
80, 71, -0.100000000000000019428902930940239457,
63, 72, -0.100000000000000033306690738754696213,
71, 72, -0.100000000000000005551115123125782702,
72, 72, 0.400000000000000133226762955018784851,
81, 72, -0.100000000000000005551115123125782702,
64, 73, -0.100000000000000005551115123125782702,
73, 73, 0.400000000000000133226762955018784851,
74, 73, -0.100000000000000005551115123125782702,
65, 74, -0.100000000000000019428902930940239457,
73, 74, -0.100000000000000005551115123125782702,
74, 74, 0.400000000000000077715611723760957830,
75, 74, -0.100000000000000005551115123125782702,
66, 75, -0.100000000000000005551115123125782702,
74, 75, -0.100000000000000005551115123125782702,
75, 75, 0.400000000000000133226762955018784851,
76, 75, -0.100000000000000061062266354383609723,
67, 76, -0.099999999999999977795539507496869192,
75, 76, -0.100000000000000061062266354383609723,
76, 76, 0.400000000000000077715611723760957830,
77, 76, -0.100000000000000061062266354383609723,
68, 77, -0.099999999999999977795539507496869192,
76, 77, -0.100000000000000061062266354383609723,
77, 77, 0.400000000000000133226762955018784851,
78, 77, -0.100000000000000061062266354383609723,
69, 78, -0.099999999999999977795539507496869192,
77, 78, -0.100000000000000061062266354383609723,
78, 78, 0.400000000000000133226762955018784851,
79, 78, -0.100000000000000061062266354383609723,
70, 79, -0.100000000000000005551115123125782702,
78, 79, -0.100000000000000061062266354383609723,
79, 79, 0.400000000000000133226762955018784851,
80, 79, -0.100000000000000005551115123125782702,
71, 80, -0.100000000000000019428902930940239457,
79, 80, -0.100000000000000005551115123125782702,
80, 80, 0.400000000000000077715611723760957830,
81, 80, -0.100000000000000005551115123125782702,
72, 81, -0.100000000000000005551115123125782702,
80, 81, -0.100000000000000005551115123125782702,
81, 81, 0.400000000000000133226762955018784851};

While this clearly should be stored and solved as a sparse matrix, for purposes of rapid prototyp-
ing we simply populate a dense matrix so that we can use the dense matrix solver developed in a
previous section. As is typical with a partial differential equation solved with a nearest-neighbor
stencil (finite difference) approximation, the system has a main diagonal, adjacent diagonals, and
diagonals that are 9 elements away, the width or height of the square domain. The plot shows the
matrix with the values of coefficients in the z dimension.

124 Posits4.nb

While this clearly should be stored and solved as a sparse matrix, for purposes of rapid prototyp-
ing we simply populate a dense matrix so that we can use the dense matrix solver developed in a
previous section. As is typical with a partial differential equation solved with a nearest-neighbor
stencil (finite difference) approximation, the system has a main diagonal, adjacent diagonals, and
diagonals that are 9 elements away, the width or height of the square domain. The plot shows the
matrix with the values of coefficients in the z dimension.

A = Table[0, {i, 1, 81}, {j, 1, 81}];
Fori = 1, i < Length[sandia81A],

i += 3, Asandia81Ai,sandia81Ai+1
= sandia81A〚i+2〛;

ListPlot3D[A, ViewPoint → {1, 2, 2}]

Sandia also supplied their right-hand side vector b, which does not have the obvious decimal
approximation quality of the matrix input values.

sandia81b = {

1, 1, 0.568282626667702128742121203686110675,
2, 1, -0.194365394908625366277021839778171852,
3, 1, -0.688407046958027679650626851071137935,
4, 1, -0.231093558206384303010949565759801771,
5, 1, 0.545583373405327809457787680003093556,
6, 1, 0.568282626667701129541399041045224294,
7, 1, -0.194365394908622035607947964308550581,
8, 1, -0.688407046958026569427602225914597511,
9, 1, -0.231093558206384108721920256357407197,
10, 1, -0.942199858426785996634578168595908210,
11, 1, -0.919500605164410789171824944787658751,
12, 1, 0.373917231759081980513315102143678814,

Posits4.nb 125

12, 1, 0.373917231759081980513315102143678814,
13, 1, 1.150594163370796563228282138879876584,
14, 1, 0.337189068461317520419839866008260287,
15, 1, -0.942199858426788106058324956393335015,
16, 1, -0.919500605164409567926497857115464285,
17, 1, 0.373917231759085422204691440128954127,
18, 1, 1.150594163370796341183677213848568499,
19, 1, -1.150594163370794564826837813598103821,
20, 1, -0.373917231759076207353587051329668611,
21, 1, 0.919500605164412787573269270069431514,
22, 1, 0.942199858426784109255436305829789490,
23, 1, -0.337189068461320018421645272610476241,
24, 1, -1.150594163370794786871442738629411906,
25, 1, -0.373917231759078649844241226674057543,
26, 1, 0.919500605164413675751688970194663852,
27, 1, 0.942199858426784331300041230861097574,
28, 1, 0.231093558206386162634515812897006981,
29, 1, 0.688407046958029344985163788805948570,
30, 1, 0.194365394908621258451830726698972285,
31, 1, -0.568282626667704571232775379030499607,
32, 1, -0.545583373405327365368577829940477386,
33, 1, 0.231093558206387883480203981889644638,
34, 1, 0.688407046958026791472207150945905596,
35, 1, 0.194365394908618399627542316920880694,
36, 1, -0.568282626667704349188170453999191523,
37, 1, 1.293417836923493435818954822025261819,
38, 1, 0.799376184874084239062597134761745110,
39, 1, -0.799376184874088790976998097903560847,
40, 1, -1.293417836923494323997374522150494158,
41, 1, 0.000000000000001110223024625156540424,
42, 1, 1.293417836923495212175794222275726497,
43, 1, 0.799376184874085238263319297402631491,
44, 1, -0.799376184874091344489954735763603821,
45, 1, -1.293417836923494101952769597119186074,
46, 1, 0.568282626667702239764423666201764718,
47, 1, -0.194365394908625976899685383614269085,
48, 1, -0.688407046958028567829046551196370274,
49, 1, -0.231093558206383831166164100068272091,
50, 1, 0.545583373405328919680812305159633979,
51, 1, 0.568282626667701462608306428592186421,
52, 1, -0.194365394908622868275216433175955899,
53, 1, -0.688407046958027457606021926039829850,
54, 1, -0.231093558206383942188466562583926134,
55, 1, -0.942199858426786107656880631111562252,
56, 1, -0.919500605164411677350244644912891090,
57, 1, 0.373917231759081591935256483338889666,
58, 1, 1.150594163370797229362096913973800838,
59, 1, 0.337189068461318353087108334875665605,
60, 1, -0.942199858426788106058324956393335015,
61, 1, -0.919500605164410345082615094725042582,
62, 1, 0.373917231759084978115481590066337958,
63, 1, 1.150594163370796785272887063911184669,
64, 1, -1.150594163370795897094467363785952330,
65, 1, -0.373917231759078705355392457931884564,
66, 1, 0.919500605164412787573269270069431514,
67, 1, 0.942199858426786995835300331236794591,

126 Posits4.nb

67, 1, 0.942199858426786995835300331236794591,
68, 1, -0.337189068461318464109410797391319647,
69, 1, -1.150594163370796785272887063911184669,
70, 1, -0.373917231759081203357197864534100518,
71, 1, 0.919500605164414008818596357741625980,
72, 1, 0.942199858426786995835300331236794591,
73, 1, 0.231093558206380805808421996516699437,
74, 1, 0.688407046958026569427602225914597511,
75, 1, 0.194365394908624922187811989715555683,
76, 1, -0.568282626667699353184559640794759616,
77, 1, -0.545583373405327809457787680003093556,
78, 1, 0.231093558206382471142958934251510072,
79, 1, 0.688407046958023904892343125538900495,
80, 1, 0.194365394908622035607947964308550581,
81, 1, -0.568282626667699242162257178279105574};

b = Table[sandia81b〚i+2〛, {i, 1, Length[sandia81b], 3}];

Clearly, the matrix is constructed from exact rationals. Sandia gave the OK to reconstruct those
original rationals, which will allow us to scale both A and b to improve the statement of A. If we
multiply A by 120, all the values become very close to integers. With tiny 3-point type, the entire
matrix fits in a page width once we reconstruct the original intention of the matrix description.

Posits4.nb 127

A = Round[120 A];
b = 120 b;
Style[MatrixForm[A], 3]

48 -12 0 0 0 0 0 0 0 -12 0

-12 48 -12 0 0 0 0 0 0 0 -12 0

0 -12 50 -13 0 0 0 0 0 0 0 -13 0

0 0 -13 51 -12 0 0 0 0 0 0 0 -14 0

0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0

-12 0 0 0 0 0 0 0 0 48 -12 0 0 0 0 0 0 0 -12 0

0 -12 0 0 0 0 0 0 0 -12 50 -13 0 0 0 0 0 0 0 -13 0

0 0 -13 0 0 0 0 0 0 0 -13 62 -18 0 0 0 0 0 0 0 -18 0

0 0 0 -14 0 0 0 0 0 0 0 -18 70 -15 0 0 0 0 0 0 0 -23 0

0 0 0 0 -12 0 0 0 0 0 0 0 -15 54 -12 0 0 0 0 0 0 0 -15 0

0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 50 -13 0 0 0 0 0 0 0 -13 0

0 0 0 0 0 0 0 0 0 0 -13 0 0 0 0 0 0 0 -13 62 -18 0 0 0 0 0 0 0 -18 0

0 0 0 0 0 0 0 0 0 0 0 -18 0 0 0 0 0 0 0 -18 88 -26 0 0 0 0 0 0 0 -26 0

0 0 0 0 0 0 0 0 0 0 0 0 -23 0 0 0 0 0 0 0 -26 109 -27 0 0 0 0 0 0 0 -33 0

0 0 0 0 0 0 0 0 0 0 0 0 0 -15 0 0 0 0 0 0 0 -27 84 -15 0 0 0 0 0 0 0 -27 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -15 54 -12 0 0 0 0 0 0 0 -15 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -13 0 0 0 0 0 0 0 0 51 -14 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -18 0 0 0 0 0 0 0 -14 70 -23 0 0 0 0 0 0 0 -15 0

0 -26 0 0 0 0 0 0 0 -23 109 -33 0 0 0 0 0 0 0 -27 0

0 -33 0 0 0 0 0 0 0 -33 132 -33 0 0 0 0 0 0 0 -33 0

0 -27 0 0 0 0 0 0 0 -33 109 -23 0 0 0 0 0 0 0 -26 0

0 -15 0 0 0 0 0 0 0 -23 70 -14 0 0 0 0 0 0 0 -18 0

0 -12 0 0 0 0 0 0 0 -14 51 -12 0 0 0 0 0 0 0 -13 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0

0 -12 0 0 0 0 0 0 0 0 48 -12 0 0 0 0 0 0 0 -12 0

0 -15 0 0 0 0 0 0 0 -12 54 -15 0 0 0 0 0 0 0 -12 0

0 -27 0 0 0 0 0 0 0 -15 84 -27 0 0 0 0 0 0 0 -15 0

0 -33 0 0 0 0 0 0 0 -27 109 -26 0 0 0 0 0 0 0 -23 0

0 -26 0 0 0 0 0 0 0 -26 88 -18 0 0 0 0 0 0 0 -18 0

0 -18 0 0 0 0 0 0 0 -18 62 -13 0 0 0 0 0 0 0 -13 0

0 -13 0 0 0 0 0 0 0 -13 50 -12 0 0 0 0 0 0 0 -12 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0

0 -12 0 0 0 0 0 0 0 0 48 -12 0 0 0 0 0 0 0 -12 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 -15 0 0 0 0 0 0 0 -12 54 -15 0 0 0 0 0 0 0 -12 0

0 -23 0 0 0 0 0 0 0 -15 70 -18 0 0 0 0 0 0 0 -14 0

0 -18 0 0 0 0 0 0 0 -18 62 -13 0 0 0 0 0 0 0 -13 0

0 -13 0 0 0 0 0 0 0 -13 50 -12 0 0 0 0 0 0 0 -12 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 0 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -14 0 0 0 0 0 0 0 -12 51 -13 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -13 0 0 0 0 0 0 0 -13 50 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 0 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12

0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 0 48 -12 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0

0 -12 0 0 0 0 0 0 0 -12 48 -12

0 -12 0 0 0 0 0 0 0 -12 48

0 -12 0 0 0 0 0 0 0 -12

Here is the “correct answer” as supplied by Sandia using conventional double-precision floating
point. We would expect that to have almost 15 decimals of accuracy, since this matrix appears to
be diagonally dominant and well-conditioned.

sandia81x = {

1, 1, -0.104455895784591870634194776812364580,
2, 1, -1.861189570032811380073667351098265499,
3, 1, -1.722463578045537291316691153042484075,
4, 1, 0.335928566686036933486292355155455880,
5, 1, 1.862960898807013876421478926204144955,
6, 1, 0.549298777343198207923080644832225516,
7, 1, -1.656877198658314620516307513753417879,
8, 1, -1.714481606938342839185906996135599911,
9, 1, 0.068312196999079990988867905343795428,
10, 1, -4.239460279782576002105543011566624045,
11, 1, -3.674184857214861654739479490672238171,
12, 1, 1.111759246627821884345621583634056151,
13, 1, 3.207148543904415394223406110540963709,
14, 1, 1.110782517145542547254422061087097973,
15, 1, -3.691714857452915499180789993260987103,
16, 1, ,

128 Posits4.nb

16, 1, -3.518672015951896714369695473578758538,
17, 1, 1.614709043486125095157035502779763192,
18, 1, 4.298665976998501392358775774482637644,
19, 1, -3.757201781862992806537704382208175957,
20, 1, -1.124172480722375633277465567516628653,
21, 1, 2.027042297107821688939566229237243533,
22, 1, 1.958812797335875321991238706686999649,
23, 1, -0.442840862954280378716021004947833717,
24, 1, -3.486270124080625976148439804092049599,
25, 1, -1.145798999538387707985975794144906104,
26, 1, 3.654151502245384541822659230092540383,
27, 1, 4.005701033800839638843171996995806694,
28, 1, 1.207613547548265664488553738920018077,
29, 1, 1.960702164798509672394288827490527183,
30, 1, 0.666690577258767569368558270070934668,
31, 1, -0.426187910195240993171950094620115124,
32, 1, -0.518206507290501772189372786669991910,
33, 1, 0.967032808823422351807153063418809325,
34, 1, 2.506766957224376035640034388052299619,
35, 1, 0.946988879588824383759515512792859226,
36, 1, -1.352011928308372468165998725453391671,
37, 1, 4.604238066436249887658505031140521169,
38, 1, 2.842329174087169896267823787638917565,
39, 1, -1.273689738761294876212559756822884083,
40, 1, -1.745566229293452176207779302785638720,
41, 1, 0.490947894124782457936362334294244647,
42, 1, 3.837729653367927706852924529812298715,
43, 1, 2.621810099949757333348543397733010352,
44, 1, -2.964604961892273848889090004377067089,
45, 1, -4.677911359946111069518792646704241633,
46, 1, 1.432831174874628743509674677625298500,
47, 1, -0.666284164331339634479434153035981581,
48, 1, -1.638006058495278249864668396185152233,
49, 1, 0.027504355373328018968814845379711187,
50, 1, 1.832354004085601673068595118820667267,
51, 1, 1.723224163505964856568652976420708001,
52, 1, -0.978152798532918699159210973448352888,
53, 1, -2.755545618420651710067659223568625748,
54, 1, -1.460850180348866933499607512203510851,
55, 1, -3.889455469283416011450071891886182129,
56, 1, -3.358636998705621046212854707846418023,
57, 1, 1.737059099917829918524603272089734674,
58, 1, 4.385162424181196172412455780431628227,
59, 1, 1.261683756009564838507230888353660703,
60, 1, -3.667163415777232149395103988354094326,
61, 1, -3.558445890080517592934938875259831548,
62, 1, 1.265495936671723109512299743073526770,
63, 1, 3.900991839035131025781311109312810004,
64, 1, -4.210017469034814219241980026708915830,
65, 1, -1.420861409481443571323211472190450877,
66, 1, 3.820544715100204324897958940709941089,
67, 1, 3.995027085531709598598126831348054111,
68, 1, -1.183354416085125260238442024274263531,
69, 1, -4.673117108276066744565468979999423027,
70, 1, -1.658957231039541735384545972920022905,
71, 1, 3.735811098562083376606324236490763724,

Posits4.nb 129

71, 1, 3.735811098562083376606324236490763724,
72, 1, 4.293379966109708512078668718459084630,
73, 1, -0.023811363666440366754217805578264233,
74, 1, 1.803836432305244708018676647043321282,
75, 1, 1.775948032788597474862513081461656839,
76, 1, -0.464242965337303747919150964662549086,
77, 1, -1.945120712992527423068622738355770707,
78, 1, -0.677051736494404976518524108541896567,
79, 1, 1.599095293227147385195507922617252916,
80, 1, 1.848319670862301089542256704589817673,
81, 1, 0.114718342573754350510739641322288662};

xSandia = Table[sandia81x〚i+2〛, {i, 1, Length[sandia81x], 3}];

Start by using Mathematica’s built-in solver.

xMathematica = LinearSolve[A, b]

{-0.1044558957845920573040, -1.86118957003281196319, -1.72246357804553828948,
0.335928566686036934373, 1.86296089880701384199, 0.549298777343197910959,

-1.65687719865831647889, -1.71448160693834490957, 0.0683121969990787677097,

-4.23946027978257755345, -3.67418485721486384321, 1.11175924662782080735,

3.20714854390441654812, 1.11078251714554242806, -3.69171485745291701468,
-3.51867201595189856087, 1.61470904348612376716, 4.29866597699850106763,

-3.75720178186299434693, -1.12417248072237644273, 2.02704229710782123626,

1.95881279733587577159, -0.442840862954281432328, -3.48627012408062877627,
-1.14579899953838883781, 3.65415150224538324940, 4.00570103380083832382,

1.20761354754826575611, 1.96070216479850998068, 0.666690577258767909891,

-0.426187910195241457073, -0.518206507290503285732, 0.967032808823420814715,

2.50676695722437523496, 0.946988879588822986907, -1.35201192830837433473,
4.60423806643625006884, 2.84232917408717138038, -1.27368973876129490559,
-1.74556622929345323775, 0.490947894124781296819, 3.83772965336792582994,

2.62181009994975544700, -2.96460496189227619827, -4.67791135994611515779,
1.43283117487462878067, -0.666284164331340091597, -1.63800605849527893376,
0.0275043553733275122839, 1.83235400408560142027, 1.72322416350596285971,

-0.978152798532921308813, -2.75554561842065462432, -1.46085018034886907862,
-3.88945546928341725220, -3.35863699870562182469, 1.73705909991782980962,
4.38516242418119775068, 1.26168375600956476576, -3.66716341577723592285,
-3.55844589008052023490, 1.26549593667172266450, 3.90099183903513288952,

-4.21001746903481488823, -1.42086140948144299107, 3.82054471510020632690,

3.99502708553171107656, -1.18335441608512685254, -4.67311710827607002138,
-1.65895723103954292163, 3.73581109856208284656, 4.29337996610971011945,
-0.0238113636664403387097, 1.80383643230524547531, 1.77594803278859953674,

-0.464242965337302877141, -1.94512071299252859001, -0.677051736494406535791,
1.59909529322714775680, 1.84831967086230143571, 0.114718342573754783384}

Compute the residual to check to see if this an accurate answer:

130 Posits4.nb

b - A.xMathematica

0. × 10-20, 0. × 10-19, 0. × 10-19, 0. × 10-20, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19,

0. × 10-20, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19,

0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19,

0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19,

0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19,

0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19,

0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19,

0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19,

0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19,

0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-20, 0. × 10-19,

0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-19, 0. × 10-20

That looks like an accurate answer all right! Maybe we can make a 3D plot of it.

ans2D = TablexMathematica〚8 i+j+1〛, {i, 0, 8}, {j, 0, 8};
ListPlot3D[ans2D, ColorFunction → "Rainbow"]

Let’s attempt the problem with mere 16-bit posits and see what happens.

Posits4.nb 131

xposit = linsolverp[A, b]; N[xposit, 3]

{-0.104, -1.86, -1.72, 0.336, 1.86, 0.549, -1.66, -1.71, 0.0683, -4.24,
-3.67, 1.11, 3.21, 1.11, -3.69, -3.52, 1.61, 4.30, -3.76, -1.12, 2.03,

1.96, -0.443, -3.49, -1.15, 3.65, 4.01, 1.21, 1.96, 0.667, -0.426,
-0.518, 0.967, 2.51, 0.947, -1.35, 4.60, 2.84, -1.27, -1.75, 0.491,

3.84, 2.62, -2.96, -4.68, 1.43, -0.666, -1.64, 0.0275, 1.83, 1.72,

-0.978, -2.76, -1.46, -3.89, -3.36, 1.74, 4.39, 1.26, -3.67, -3.56,
1.27, 3.90, -4.21, -1.42, 3.82, 4.00, -1.18, -4.67, -1.66, 3.74,

4.29, -0.0238, 1.80, 1.78, -0.464, -1.95, -0.677, 1.60, 1.85, 0.115}

Here’s the residual:

res1 = b - A.xposit; N[res1, 4]

-7.760 × 10-8, 1.954 × 10-7, -6.711 × 10-7, -5.065 × 10-8, -2.789 × 10-7, -9.717 × 10-7,

8.363 × 10-8, 3.854 × 10-8, -4.809 × 10-7, 4.502 × 10-9, 1.537 × 10-7, -5.900 × 10-7,

-6.337 × 10-6, -1.665 × 10-6, 6.080 × 10-7, -2.879 × 10-6, 1.615 × 10-6, -1.357 × 10-6,

1.580 × 10-6, -1.645 × 10-6, -2.195 × 10-6, -7.384 × 10-7, -5.032 × 10-7,

-2.913 × 10-6, -9.544 × 10-8, 2.298 × 10-6, -7.868 × 10-7, 1.256 × 10-6, 2.819 × 10-6,

1.695 × 10-8, 8.823 × 10-7, -6.859 × 10-7, 2.481 × 10-6, 1.288 × 10-6, 9.893 × 10-7,

8.376 × 10-7, -1.551 × 10-7, -3.911 × 10-6, 7.724 × 10-8, -1.542 × 10-6, -1.319 × 10-6,

-3.277 × 10-6, -2.309 × 10-6, 5.355 × 10-7, 1.317 × 10-6, -1.016 × 10-6,

7.095 × 10-7, 1.173 × 10-6, 4.541 × 10-7, -5.658 × 10-7, 1.442 × 10-6, 6.201 × 10-7,

6.867 × 10-7, 1.128 × 10-6, -1.538 × 10-6, 3.872 × 10-6, 1.849 × 10-7, -2.187 × 10-6,

-1.572 × 10-6, -3.755 × 10-7, 1.368 × 10-6, 9.545 × 10-8, -5.743 × 10-7, 3.368 × 10-7,

-5.425 × 10-7, -6.082 × 10-7, -8.762 × 10-7, 1.115 × 10-7, -3.538 × 10-6,

-4.208 × 10-6, -4.453 × 10-6, 1.370 × 10-6, 8.976 × 10-8, 9.086 × 10-7, -1.693 × 10-6,

7.760 × 10-8, -1.263 × 10-6, 2.127 × 10-7, 3.414 × 10-7, 4.640 × 10-7, 3.289 × 10-8

If we use that to amend the answer, we get a result that matches the one supplied by Sandia, to
the precision of 16-bit posits:

132 Posits4.nb

xposit = xposit + linsolverp[A, res1];
N[xposit, 3]
NxSandia, 3
ans2Dp = Tablexposit〚8 i+j+1〛, {i, 0, 8}, {j, 0, 8};
ListPlot3D[ans2Dp, ColorFunction → "Rainbow"]

{-0.104, -1.86, -1.72, 0.336, 1.86, 0.549, -1.66, -1.71, 0.0683, -4.24,
-3.67, 1.11, 3.21, 1.11, -3.69, -3.52, 1.61, 4.30, -3.76, -1.12, 2.03,

1.96, -0.443, -3.49, -1.15, 3.65, 4.01, 1.21, 1.96, 0.667, -0.426,
-0.518, 0.967, 2.51, 0.947, -1.35, 4.60, 2.84, -1.27, -1.75, 0.491,

3.84, 2.62, -2.96, -4.68, 1.43, -0.666, -1.64, 0.0275, 1.83, 1.72,

-0.978, -2.76, -1.46, -3.89, -3.36, 1.74, 4.39, 1.26, -3.67, -3.56,
1.27, 3.90, -4.21, -1.42, 3.82, 4.00, -1.18, -4.67, -1.66, 3.74,

4.29, -0.0238, 1.80, 1.78, -0.464, -1.95, -0.677, 1.60, 1.85, 0.115}

{-0.104, -1.86, -1.72, 0.336, 1.86, 0.549, -1.66, -1.71, 0.0683, -4.24,
-3.67, 1.11, 3.21, 1.11, -3.69, -3.52, 1.61, 4.30, -3.76, -1.12, 2.03,

1.96, -0.443, -3.49, -1.15, 3.65, 4.01, 1.21, 1.96, 0.667, -0.426,
-0.518, 0.967, 2.51, 0.947, -1.35, 4.60, 2.84, -1.27, -1.75, 0.491,

3.84, 2.62, -2.96, -4.68, 1.43, -0.666, -1.64, 0.0275, 1.83, 1.72,

-0.978, -2.76, -1.46, -3.89, -3.36, 1.74, 4.39, 1.26, -3.67, -3.56,
1.27, 3.90, -4.21, -1.42, 3.82, 4.00, -1.18, -4.67, -1.66, 3.74,

4.29, -0.0238, 1.80, 1.78, -0.464, -1.95, -0.677, 1.60, 1.85, 0.115}

Any discrepancy in the answer is far too small to see. With the residual correction method, there
appears to be no reason to use posit precision higher than 16-bit, which would obviously permit
the solution of much larger problems than if we have to use 64-bit data for everything. The quire
allows 16-bit posits to do the work of 64-bit floats.

12.6 The Time Complexity of Unum Linear Solvers

The A and b inputs to A x = b problems can be approximate in real applications. There is a theo-
rem from interval arithmetic that says that finding the exact mathematical description of the entire
set of x values that solves the linear equations with interval bounds on the inputs is NP-hard.
There is an easy way to understand why this is true: Every row of an exact matrix specifies a
hyperplane in n-space, and the solution is the intersection of n hyperplanes. For example, a 2-by-2
system of linear equations simply represents the intersection of two lines.

Posits4.nb 133

The A and b inputs to A x = b problems can be approximate in real applications. There is a theo-
rem from interval arithmetic that says that finding the exact mathematical description of the entire
set of x values that solves the linear equations with interval bounds on the inputs is NP-hard.
There is an easy way to understand why this is true: Every row of an exact matrix specifies a
hyperplane in n-space, and the solution is the intersection of n hyperplanes. For example, a 2-by-2
system of linear equations simply represents the intersection of two lines.

-1 1 2 3 4
x

-2

2

4

6

8

y

When the equations are specified in a number system, whether floats or posits, the exact intersec-
tion point has coordinates that in general are not floats or posits, though they are rational num-
bers. It would be coincidence if the denominators were powers of 2 such that they land in the
numerical vocabulary. There is a unique closest point to the answer, found simply by rounding
each element of the answer vector.

If the matrix coefficients are intervals instead of exact points, then a single row represents the
intersection of n "hyperslabs," regions in n-space bounded by slabs. The only way to find that
intersection is to examine every possible combination of minimum and maximum values for the
bounds, or 2n hyperplanes. A rigorous bound means finding the hyperplane with minimum and
maximum of each of the n2 matrix elements and n right-hand-side elements, a total of 2 n2 + n
cases. Even when n is as small as 2, the exact geometrical intersection representing the result
can be laborious to compute, as the following figure indicates.

-1 1 2 3 4
x

2

4

6

8

y

What about simply finding a particular solution x that seems to solve A x = b, and then perturbing x
to find other solutions that work, iterating until we have found them all? This is one of the ubox-
based methods, computing with multidimensional vectors that are either exact or an open interval
one ULP wide for each component, or ubox. In the figure below, the black dot is a first guess
produced by whatever solver you prefer (and checked to see that it really does solve the equa-
tions after rounding). That is an exact ubox in all dimensions, and the seed of an exploration. By
testing the neighbor points to see if they also satisfy A x = b (where “=” means interval intersection
with the right-hand side vector), we can “paint” the interior of the complex shape to find all the
uboxes that make up the solution set, shown in light green below. The red border represents a
ubox that provably does not satisfy A x = b. That is, the exact matrix A times the ubox x results in
intervals that do not intersect all components of b.

134 Posits4.nb

What about simply finding a particular solution x that seems to solve A x = b, and then perturbing x
to find other solutions that work, iterating until we have found them all? This is one of the ubox-
based methods, computing with multidimensional vectors that are either exact or an open interval
one ULP wide for each component, or ubox. In the figure below, the black dot is a first guess
produced by whatever solver you prefer (and checked to see that it really does solve the equa-
tions after rounding). That is an exact ubox in all dimensions, and the seed of an exploration. By
testing the neighbor points to see if they also satisfy A x = b (where “=” means interval intersection
with the right-hand side vector), we can “paint” the interior of the complex shape to find all the
uboxes that make up the solution set, shown in light green below. The red border represents a
ubox that provably does not satisfy A x = b. That is, the exact matrix A times the ubox x results in
intervals that do not intersect all components of b.

While this approach has the advantage that it is easily done on a massively parallel computer, and
it is much simpler to program than to intersect hyperplanes with computational geometry, notice
that in perturbing the x value by an ULP in each component means 3n perturbations in each
dimension, since each component can go down by an ULP, stay the same, or go up by an ULP. It
works up to some value of n, but not a very large n. Like, for LINPACK with n = 100, having to test
3100 input vectors (uboxes) is clearly intractable. It doesn't matter whether the matrix is dense or
sparse. At first, it looks like this is an impasse to getting reasonable time complexity for ubox-type
solvers.

The LINPACK example leads to an insight, however: In Section 12.1, we perturbed the A matrix
such that the exact answer matched a preconceived solution of all 1 values for the xi. That's a
form of reverse error analysis: The approximate solution to a problem can be viewed as the exact
answer to a different problem, and if the different problem is only slightly different, then we might
accept the answer. This argument dates back to classic 1950s papers by Wilkinson on numerical
analysis, who created existence proofs for when some other problem is within a distance from the
problem originally posed. But reverse error analysis does not actually construct the altered prob-
lem; it only states that it exists under certain conditions.

With unum arithmetic, we can explicitly construct the altered problem for reverse error
analysis. Furthermore, this allows us to make the time complexity of perfect, bounded solutions
as easy as it is for all current numerical methods for solving A x = b.

The original random matrix A for the LINPACK benchmark was altered so that the solution vector
was expressible as an exact point in n-space using the posit vocabulary. Every perturbation of that
solution vector fails to solve the linear system! So we’re done. There is only one “ubox” that
solves the system, and it is exact in all dimensions and exactly 1 in every component. There are
no ULP-wide ranges. This cannot be achieved with traditional interval arithmetic, incidentally;
traditional interval arithmetic uses closed intervals of the form [a, b] where a ≤ b, and all 3n - 1
neighbors of the exact point will also yield a vector that touches b in every component, so they still
create intractiable time complexity. With unum arithmetic, valids are open intervals, and do not
include the endpoint that satisfies A x = b. That means any open-interval neighbor of the exact
solution is part of that red boundary in the diagram above. The iterative method is On3 since the

original Gaussian elimination (LU factorization) is On3 and the iterations are On2 since they

depend only on evaluating the matrix-vector product using the quire and backsolving with U-1 and
L-1 (the triangular matrices formed by Gaussian elimination), all of which require only On2) work.

Hence, the time complexity of solving LINPACK is On3 for an n-by-n system, even if the iterative
method is used to obtain a perfect, single exact solution. That result appears to be new.

However, for real problems, we do not generally have the option of tweaking matrix entries. The
Sandia test data is a good example of that. Remember that after scaling by 120, the matrix was all
integers:

Posits4.nb 135

The original random matrix A for the LINPACK benchmark was altered so that the solution vector
was expressible as an exact point in n-space using the posit vocabulary. Every perturbation of that
solution vector fails to solve the linear system! So we’re done. There is only one “ubox” that
solves the system, and it is exact in all dimensions and exactly 1 in every component. There are
no ULP-wide ranges. This cannot be achieved with traditional interval arithmetic, incidentally;
traditional interval arithmetic uses closed intervals of the form [a, b] where a ≤ b, and all 3n - 1
neighbors of the exact point will also yield a vector that touches b in every component, so they still
create intractiable time complexity. With unum arithmetic, valids are open intervals, and do not
include the endpoint that satisfies A x = b. That means any open-interval neighbor of the exact
solution is part of that red boundary in the diagram above. The iterative method is On3 since the

original Gaussian elimination (LU factorization) is On3 and the iterations are On2 since they

depend only on evaluating the matrix-vector product using the quire and backsolving with U-1 and
L-1 (the triangular matrices formed by Gaussian elimination), all of which require only On2) work.

Hence, the time complexity of solving LINPACK is On3 for an n-by-n system, even if the iterative
method is used to obtain a perfect, single exact solution. That result appears to be new.

However, for real problems, we do not generally have the option of tweaking matrix entries. The
Sandia test data is a good example of that. Remember that after scaling by 120, the matrix was all
integers:

48 -12 0 0 0 0 0 0 0 -12 0

-12 48 -12 0 0 0 0 0 0 0 -12 0

0 -12 50 -13 0 0 0 0 0 0 0 -13 0

0 0 -13 51 -12 0 0 0 0 0 0 0 -14 0

0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0

-12 0 0 0 0 0 0 0 0 48 -12 0 0 0 0 0 0 0 -12 0

0 -12 0 0 0 0 0 0 0 -12 50 -13 0 0 0 0 0 0 0 -13 0

0 0 -13 0 0 0 0 0 0 0 -13 62 -18 0 0 0 0 0 0 0 -18 0

0 0 0 -14 0 0 0 0 0 0 0 -18 70 -15 0 0 0 0 0 0 0 -23 0

0 0 0 0 -12 0 0 0 0 0 0 0 -15 54 -12 0 0 0 0 0 0 0 -15 0

0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 50 -13 0 0 0 0 0 0 0 -13 0

0 0 0 0 0 0 0 0 0 0 -13 0 0 0 0 0 0 0 -13 62 -18 0 0 0 0 0 0 0 -18 0

0 0 0 0 0 0 0 0 0 0 0 -18 0 0 0 0 0 0 0 -18 88 -26 0 0 0 0 0 0 0 -26 0

0 0 0 0 0 0 0 0 0 0 0 0 -23 0 0 0 0 0 0 0 -26 109 -27 0 0 0 0 0 0 0 -33 0

0 0 0 0 0 0 0 0 0 0 0 0 0 -15 0 0 0 0 0 0 0 -27 84 -15 0 0 0 0 0 0 0 -27 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -15 54 -12 0 0 0 0 0 0 0 -15 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -13 0 0 0 0 0 0 0 0 51 -14 0 0 0 0 0 0 0 -12 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -18 0 0 0 0 0 0 0 -14 70 -23 0 0 0 0 0 0 0 -15 0

0 -26 0 0 0 0 0 0 0 -23 109 -33 0 0 0 0 0 0 0 -27 0

0 -33 0 0 0 0 0 0 0 -33 132 -33 0 0 0 0 0 0 0 -33 0

0 -27 0 0 0 0 0 0 0 -33 109 -23 0 0 0 0 0 0 0 -26 0

0 -15 0 0 0 0 0 0 0 -23 70 -14 0 0 0 0 0 0 0 -18 0

0 -12 0 0 0 0 0 0 0 -14 51 -12 0 0 0 0 0 0 0 -13 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0

0 -12 0 0 0 0 0 0 0 0 48 -12 0 0 0 0 0 0 0 -12 0

0 -15 0 0 0 0 0 0 0 -12 54 -15 0 0 0 0 0 0 0 -12 0

0 -27 0 0 0 0 0 0 0 -15 84 -27 0 0 0 0 0 0 0 -15 0

0 -33 0 0 0 0 0 0 0 -27 109 -26 0 0 0 0 0 0 0 -23 0

0 -26 0 0 0 0 0 0 0 -26 88 -18 0 0 0 0 0 0 0 -18 0

0 -18 0 0 0 0 0 0 0 -18 62 -13 0 0 0 0 0 0 0 -13 0

0 -13 0 0 0 0 0 0 0 -13 50 -12 0 0 0 0 0 0 0 -12 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0

0 -12 0 0 0 0 0 0 0 0 48 -12 0 0 0 0 0 0 0 -12 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 -15 0 0 0 0 0 0 0 -12 54 -15 0 0 0 0 0 0 0 -12 0

0 -23 0 0 0 0 0 0 0 -15 70 -18 0 0 0 0 0 0 0 -14 0

0 -18 0 0 0 0 0 0 0 -18 62 -13 0 0 0 0 0 0 0 -13 0

0 -13 0 0 0 0 0 0 0 -13 50 -12 0 0 0 0 0 0 0 -12 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 0 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -14 0 0 0 0 0 0 0 -12 51 -13 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0 0

0 -13 0 0 0 0 0 0 0 -13 50 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 0 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0 0 0 -12

0 -12 0 0 0 0 0 0 0 -12 48 0 0 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 0 48 -12 0 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0 0

0 -12 0 0 0 0 0 0 0 -12 48 -12 0

0 -12 0 0 0 0 0 0 0 -12 48 -12

0 -12 0 0 0 0 0 0 0 -12 48

0 -12 0 0 0 0 0 0 0 -12

That’s because it results from expressing stencil operators like

136 Posits4.nb

xi, j = xi-1, j + xi+1, j + xi, j-1 + xi, j4

We should regard the matrix A as exact an “untweakable” except in the case of LINPACK. That
would seem to dash the argument of constructing the reverse-error-analysis problem.

Or does it?

Remember, Type III unums have the quire data type. When you try to solve A x = b you find an
approximate x, no matter whether you are using Gaussian elimination or Conjugate Gradient or
Successive Over-Relaxation, or whatever your favorite method is. Call that x˜, a vector of posit
elements that we hope result in A x˜ being close to b.

Then using exact quire dot products, we can compute b
˜
= A x˜. Exactly. The answer is not only x˜,

but also the explicitly-constructed problem that reverse error analysis requires:

A x = b
˜

 is a problem close to the original problem, A x = b,
and the solution is exactly x = x˜.

There is no exponential complexity to bounding the solution. The complexity is whatever the
traditional matrix solver method has for complexity, and then the perturbed version of the original
problem becomes part of the solution. That is, both x˜ the altered b

˜
 are computed and treated as

output for the problem. The user can then decide if b
˜

 is sufficiently close to the requested b. This
is a new paradigm for the solution of A x = b problems, and it is made possible only because of the
quire data type. I

Sections on linear solvers were supported in part by the DARPA TRADES Program, Contract #HR0011-17-9-0007.

Posits4.nb 137

